References of "Paetzold, M"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailTransiting exoplanets from the CoRoT space mission XXI. CoRoT-19b: A low density planet orbiting an old inactive F9V-star
Guenther, E. W.; Diaz, R. F.; Gazzano, J*-C et al

in Astronomy and Astrophysics (2012), 537

Observations of transiting extrasolar planets are of key importance to our understanding of planets because their mass, radius, and mass density can be determined. The CoRoT space mission allows us to ... [more ▼]

Observations of transiting extrasolar planets are of key importance to our understanding of planets because their mass, radius, and mass density can be determined. The CoRoT space mission allows us to achieve a very high photometric accuracy. By combining CoRoT data with high-precision radial velocity measurements, we derive precise planetary radii and masses. We report the discovery of CoRoT-19b, a gas-giant planet transiting an old, inactive F9V-type star with a period of four days. After excluding alternative physical configurations mimicking a planetary transit signal, we determine the radius and mass of the planet by combining CoRoT photometry with high-resolution spectroscopy obtained with the echelle spectrographs SOPHIE, HARPS, FIES, and SANDIFORD. To improve the precision of its ephemeris and the epoch, we observed additional transits with the TRAPPIST and Euler telescopes. Using HARPS spectra obtained during the transit, we then determine the projected angle between the spin of the star and the orbit of the planet. We find that the host star of CoRoT-19b is an inactive F9V-type star close to the end of its main-sequence life. The host star has a mass M*=1.21+/-0.05 Msun and radius R*=1.65+/-0.04 Rsun. The planet has a mass of Mp=1.11+/-0.06 Mjup and radius of Rp=1.29+/-0.03 Rjup. The resulting bulk density is only rho=0.71+/-0.06 gcm-3, which is much lower than that for Jupiter. The exoplanet CoRoT-19b is an example of a giant planet of almost the same mass as Jupiter but a 30% larger radius. [less ▲]

Detailed reference viewed: 44 (12 ULg)
Full Text
Peer Reviewed
See detailPlanetary transit candidates in the CoRoT LRa01 field
Carone, L.; Gandolfi, D.; Cabrera, J. et al

in Astronomy and Astrophysics (2012), 538

Context: CoRoT is a pioneering space mission whose primary goals are stellar seismology and extrasolar planets search. Its surveys of large stellar fields generate numerous planetary candidates whose ... [more ▼]

Context: CoRoT is a pioneering space mission whose primary goals are stellar seismology and extrasolar planets search. Its surveys of large stellar fields generate numerous planetary candidates whose lightcurves have transit-like features. An extensive analytical and observational follow-up effort is undertaken to classify these candidates. Aims: The list of planetary transit candidates from the CoRoT LRa01 star field in the Monoceros constellation towards the Galactic anti-center is presented. The CoRoT observations of LRa01 lasted from 24 October 2007 to 3 March 2008. Methods: 7470 chromatic and 3938 monochromatic lightcurves were acquired and analysed. Instrumental noise and stellar variability were treated with several filtering tools by different teams from the CoRoT community. Different transit search algorithms were applied to the lightcurves. Results: Fifty-one stars were classified as planetary transit candidates in LRa01. Thirty-seven (i.e., 73 % of all candidates) are "good" planetary candidates based on photometric analysis only. Thirty-two (i.e., 87 % of the "good" candidates) have been followed-up. At the time of this writing twenty-two cases have been solved and five planets have been discovered: three transiting hot-Jupiters (CoRoT-5b, CoRoT-12b, and CoRoT-21b), the first terrestrial transiting planet (CoRoT-7b), and another planet in the same system (CoRoT-7c, detected by radial velocity survey only). Evidences of another non-transiting planet in the CoRoT-7 system, namely CoRoT-7d, have been recently found. [less ▲]

Detailed reference viewed: 12 (1 ULg)
Full Text
Peer Reviewed
See detailTransiting exoplanets from the CoRoT space mission VIII. CoRoT-7b: the first Super-Earth with measured radius
Leger, A.; Rouan, D.; Schneider, J. et al

in Astronomy and Astrophysics (2009), 506

We report the discovery of very shallow (DF/F = 3.4 10-4), periodic dips in the light curve of an active V = 11.7 G9V star observed by the CoRoT satellite, which we interpret as due to the presence of a ... [more ▼]

We report the discovery of very shallow (DF/F = 3.4 10-4), periodic dips in the light curve of an active V = 11.7 G9V star observed by the CoRoT satellite, which we interpret as due to the presence of a transiting companion. We describe the 3-colour CoRoT data and complementary ground-based observations that support the planetary nature of the companion. Methods. We use CoRoT color information, good angular resolution ground-based photometric observations in- and out- of transit, adaptive optics imaging, near-infrared spectroscopy and preliminary results from Radial Velocity measurements, to test the diluted eclipsing binary scenarios. The parameters of the host star are derived from optical spectra, which were then combined with the CoRoT light curve to derive parameters of the companion. We examine carefully all conceivable cases of false positives, and all tests performed support the planetary hypothesis. Blends with separation larger than 0.40 arcsec or triple systems are almost excluded with a 8 10-4 risk left. We conclude that, as far as we have been exhaustive, we have discovered a planetary companion, named CoRoT-7b, for which we derive a period of 0.853 59 +/- 3 10-5 day and a radius of Rp = 1.68 +/- 0.09 REarth. Analysis of preliminary radial velocity data yields an upper limit of 21 MEarth for the companion mass, supporting the finding. CoRoT-7b is very likely the first Super-Earth with a measured radius. [less ▲]

Detailed reference viewed: 36 (5 ULg)
Full Text
Peer Reviewed
See detailTransiting exoplanets from the CoRoT space mission. IV. CoRoT-Exo-4b: a transiting planet in a 9.2 day synchronous orbit
Aigrain, S.; Collier Cameron, A.; Ollivier, M. et al

in Astronomy and Astrophysics (2008), 488

CoRoT, the first space-based transit search, provides ultra-high-precision light curves with continuous time-sampling over periods of up to 5 months. This allows the detection of transiting planets with ... [more ▼]

CoRoT, the first space-based transit search, provides ultra-high-precision light curves with continuous time-sampling over periods of up to 5 months. This allows the detection of transiting planets with relatively long periods, and the simultaneous study of the host star's photometric variability. In this Letter, we report the discovery of the transiting giant planet CoRoT-Exo-4b and use the CoRoT light curve to perform a detailed analysis of the transit and determine the stellar rotation period. The CoRoT light curve was pre-processed to remove outliers and correct for orbital residuals and artefacts due to hot pixels on the detector. After removing stellar variability about each transit, the transit light curve was analysed to determine the transit parameters. A discrete autocorrelation function method was used to derive the rotation period of the star from the out-of-transit light curve. We determine the periods of the planetary orbit and star's rotation of 9.20205 ± 0.00037 and 8.87 ± 1.12 days respectively, which is consistent with this being a synchronised system. We also derive the inclination, i = 90.00_-0.085[SUP]+0.000[/SUP] in degrees, the ratio of the orbital distance to the stellar radius, a/R[SUB]s[/SUB] = 17.36[SUB]-0.25[/SUB][SUP]+0.05[/SUP], and the planet-to-star radius ratio R_p/R_s=0.1047[SUB]-0.0022[/SUB][SUP]+0.0041[/SUP]. We discuss briefly the coincidence between the orbital period of the planet and the stellar rotation period and its possible implications for the system's migration and star-planet interaction history. The CoRoT space mission, launched on December 27th 2006, has been developed and is operated by CNES, with the contribution of Austria, Belgium, Brazil, ESA, Germany, and Spain. The first CoRoT data will be available to the public in February 2009 from the CoRoT archive: http://idoc-corot.ias.u-psud.fr/ Figures 1, 4 and 5 are only available in electronic form at http://www.aanda.org [less ▲]

Detailed reference viewed: 34 (5 ULg)
Full Text
Peer Reviewed
See detailThe plasma environment of Mars : from the shocked solar wind down to the ionosphere
Trotignon, J.-G.; Parrot, M.; Cerisier, Jean-Claude et al

in Planetary and Space Science (2000), 48(12-14), 1181-1191

Detailed reference viewed: 15 (4 ULg)
See detailNetlander Ionospheric TEC Experiment
Cerisier, Jean-Claude; Axford, W. I.; Paëtzold, M. et al

Conference (1998)

Detailed reference viewed: 7 (0 ULg)