References of "Orman-Ligeza, Beata"
     in
Bookmark and Share    
Full Text
See detailTowards understanding the function of JOINTLESS gene in tomato inflorescence
Huerga Fernandez, Samuel ULg; Gómez Roldán, Maria Victoria; Orman-Ligeza, Beata ULg et al

Poster (2017, September)

The lack of fruit abscission is a trait of great agronomical value. In tomato, the jointless phenotype, referring to the lack of abscission zone (AZ) in the flower pedicel, has been obtained by two ... [more ▼]

The lack of fruit abscission is a trait of great agronomical value. In tomato, the jointless phenotype, referring to the lack of abscission zone (AZ) in the flower pedicel, has been obtained by two independent mutations, named jointless (j) and jointless-2 (j-2). The corresponding genes encode MADS-box transcription factors, as shown in 2000 for J (Mao et al. 2000) and very recently for J-2, known as SlMBP21 (Gomez-Roldan et al., 2017). Similar to the quartet model of MADS-box protein complexes regulating floral organ formation, J and J-2 interact with MADS-box partners, among which MACROCRALYX (MC), to regulate AZ formation (Liu et al. 2014). In addition to - or in connection with - AZ formation, J acts during the building of the inflorescence to regulate meristem fate. Indeed j mutants produce leafy inflorescences characterized by faster flower maturation and resumption of vegetative meristems (Périlleux et al. 2014). For these traits, j is epistatic to j-2. The involvement of J in the regulation of meristem fate is consistent with the roles of its closest homologs in Arabidopsis, AGAMOUS LIKE 24 (AGL24) and SHORT VEGETATIVE PHASE (SVP). Our goal is to identify J targets in order to unravel its multiple functions in the tomato inflorescence. [less ▲]

See detailFlowering roots: Insensitive Root Growth 1 contributes to photoperiod-induced root responses in Arabidopsis.
Orman-Ligeza, Beata ULg; Detry, Nathalie ULg; Tocquin, Pierre ULg et al

Poster (2017, September)

The capacity to perceive and respond to seasonal changes of day length is essential for flowering plants. Under favourable photoperiod, a mobile stimulus synthesized in leaves moves to the shoot apex and ... [more ▼]

The capacity to perceive and respond to seasonal changes of day length is essential for flowering plants. Under favourable photoperiod, a mobile stimulus synthesized in leaves moves to the shoot apex and triggers the expression of genes required for the transition to flower initiation. Although transition from vegetative to reproductive state also encompasses a transcriptional response in roots, the internal signalling pathways and how root system architecture adjusts to this changing status remain elusive. Here we show in Arabidopsis that root growth rate increases upon a transfer to flowering-inductive long days while remaining constant under short days. To elucidate genetic components of this response, we performed a meta-analysis of available root-growth and flowering-related arrays and selected genes with overlapping transcriptional profiles for further analyses. Loss of function in a member of the basic leucine zipper transcription factor gene family, hereafter named Insensitive Root Growth-1 (IRG1), was found to suppress photoperiod-response of root growth with no defect in flowering time. We show that sucrose, but neither glucose nor mannitol in the growth medium under long days, is needed to trigger this response. In addition, extending the photoperiod with non-photosynthetic far red light had no effect on root growth of irg-1 mutant, alike wild type Col-0. The expression level of IRG1 in the roots remains low during the daytime and peaks late at night, suggesting that this gene is regulated by the clock’s evening loop. Taken together, our results suggest that IRG1 may be involved in sucrose-mediated stimulation of root growth during the night phase in Arabidopsis. The functional characterisation of IRG1 is currently underway. [less ▲]

Full Text
Peer Reviewed
See detailRBOH-mediated ROS production facilitates lateral root emergence in Arabidopsis
Orman-Ligeza, Beata ULg; Parizot, Boris; de Rycke, Riet et al

in Development (2016)

Lateral root (LR) emergence represents a highly coordinated process in which the plant hormone auxin plays a central role. Reactive oxygen species (ROS) have been proposed to function as important signals ... [more ▼]

Lateral root (LR) emergence represents a highly coordinated process in which the plant hormone auxin plays a central role. Reactive oxygen species (ROS) have been proposed to function as important signals during auxin-regulated LR formation, however their mode of action is poorly understood. Here, we report that Arabidopsis roots exposed to ROS show increased LR numbers due to the activation of LR pre-branch sites and LR primordia (LRP). Strikingly, ROS treatment can also restore LR formation in pCASP1:shy2-2 and aux1 lax3 mutant lines in which auxin-mediated cell wall accommodation and remodeling in cells overlying the sites of LR formation is disrupted. Specifically, ROS are deposited in the apoplast of these cells during LR emergence, following a spatio-temporal pattern that overlaps the combined expression domains of extracellular ROS donors of the RESPIRATORY BURST OXIDASE HOMOLOGS (RBOH). We also show that disrupting (or enhancing) expression of RBOH in LRP and/or overlying root tissues decelerates (or accelerates) the development and emergence of LRs. We conclude that RBOH-mediated ROS production facilitates LR outgrowth by promoting cell wall remodeling of overlying parental tissues. [less ▲]

Detailed reference viewed: 21 (6 ULg)