References of "Orban, Philippe"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailQuantitative temperature monitoring of a heat tracing experiment using cross-borehole ERT
Hermans, Thomas ULg; Wildemeersch, Samuel ULg; Jamin, Pierre ULg et al

in Geothermics (2015), 53

The growing demand for renewable energy leads to an increase in the development of geothermal energy projects and heat has become a common tracer in hydrology and hydrogeology. Designing geothermal ... [more ▼]

The growing demand for renewable energy leads to an increase in the development of geothermal energy projects and heat has become a common tracer in hydrology and hydrogeology. Designing geothermal systems requires a multidisciplinary approach including geological and hydrogeological aspects. In this context, electrical resistivity tomography (ERT) can bring relevant, qualitative and quantitative information on the temperature distribution in operating shallow geothermal systems or during heat tracing experiments. We followed a heat tracing experiment in an alluvial aquifer using cross-borehole time-lapse ERT. Heated water was injected in a well while water of the aquifer was extracted at another well. An ERT section was set up across the main flow direction. The results of ERT were transformed into temperature using calibrated petrophysical relationships. These ERT-derived temperatures were then compared to direct temperature measurements in control piezometers collected with distributed temperature sensing (DTS) and groundwater temperature loggers. Spatially, it enabled to map the horizontal and vertical extent of the heated water plume, as well as the zones where maximum temperatures occurred. Quantitatively, the temperatures and breakthrough curves estimated from ERT were in good agreement with the ones observed directly during the rise and maximum of the curve. An overestimation, likely related to 3D effects, was observed for the tail of the heat breakthrough curve. The error made on temperature can be estimated to be between 10 to 20 %, which is a fair value for indirect measurements. From our data, we estimated a quantification threshold for temperature variation of 1.2°C. These results suggest that ERT should be considered when designing heat tracing experiments or geothermal systems. It could help also to assess the geometrical complexity of the concerned reservoirs. It also appears that ERT could be a useful tool to monitor and control geothermal systems once they are in operation. [less ▲]

Detailed reference viewed: 199 (52 ULg)
Full Text
See detailLanduse change and future flood risk: the influence of micro-scale spatial patterns (FloodLand) - 2nd progress report
Dewals, Benjamin ULg; Bruwier, Martin ULg; El Saeid Mustafa, Ahmed Mohamed ULg et al

Report (2014)

The goal of the project FloodLand is to investigate the complex interactions between landuse change and future flood risk. Landuse change is assumed to be mainly driven by population growth and socio ... [more ▼]

The goal of the project FloodLand is to investigate the complex interactions between landuse change and future flood risk. Landuse change is assumed to be mainly driven by population growth and socio-economic factors. It affects future flood risk by altering catchment hydrology as well as vulnerability in the floodplains; but the feedback effect of (the perception of) changes in flood hazard on landuse evolution is also considered. The research is based on a chain of modelling tools, which represent parts of the natural and human systems, including: landuse change modelling, transportation modelling as an onset for the estimation of indirect flood damage, continuous hydrological modelling (forced by precipitation and temperature data disturbed according to climate change scenarios), as well as efficient hydraulic modelling of inundation flow in the floodplains. Besides reproducing a broad spectrum of processes, the modelling approach spans over multiple scales, from the regional or catchment level down to the floodplain and building levels. This distinctive feature is reflected both within the individual models and through their combination involving fine-scale detailed analyses (or data) embedded within coarser models at a broader level. [less ▲]

Detailed reference viewed: 56 (28 ULg)
Full Text
See detailA heat and dye tracer test for characterizing and modelling heat transfer in an alluvial aquifer
Klepikova, Maria ULg; Wildemeersch, Samuel; Jamin, Pierre ULg et al

Poster (2014, September 22)

Using heat as an active tracer is a topic of increasing interest with regards to characterizing shallow aquifers for ATES (Aquifer Thermal Energy Storage) systems. In this study, we investigate the ... [more ▼]

Using heat as an active tracer is a topic of increasing interest with regards to characterizing shallow aquifers for ATES (Aquifer Thermal Energy Storage) systems. In this study, we investigate the potential interest of coupling simultaneous heat and dye tracer injection tests for characterization of an alluvial aquifer. The study site is located near Liege in the alluvial aquifer of the Meuse River, Belgium. The tracing experiment consisted in simultaneously injecting heated water and a dye tracer in a piezometer and monitoring the evolution of groundwater temperature and tracer concentration in the recovery well and in nine monitoring wells located according to three transects with regards to the main groundwater flow direction. The breakthrough curves measured in the recovery well showed that heat transfer in the alluvial aquifer is slower and more dispersive than solute transport. Recovery is very low for heat while in the same time it is measured as relatively high for the solute tracer. This shows how heat diffusion is larger than molecular diffusion, implying that exchange between groundwater and the porous medium matrix is far more significant for heat than for solute tracers. In a first step, temperature and concentrations in the recovery well are used for estimating the specific heat capacity with an energy balance calculation and the estimated value is found to be consistent with those found in the literature. Then, the measured temperature breakthrough curves in the piezometers are used for constraining the heat transport model. They are highly contrasted with what would be expected in an ideal layered aquifer. They reveal strongly unequal lateral and vertical components of the transport mechanisms. A preliminary interpretation of these temperature breakthrough curves is provided with first results from the model. Then it will allow for estimating the entire set of heat transfer parameters and their spatial distribution by inverse modelling. The developed concepts and tests may lead to real projects of various extents that can be now optimized by the use of a rigorous and efficient methodology at the field scale. [less ▲]

Detailed reference viewed: 26 (4 ULg)
Full Text
Peer Reviewed
See detailAquifère crayeux de Hesbaye
Orban, Philippe ULg; Brouyère, Serge ULg; Compère, Jean-michel et al

in Dassargues, Alain; Walraevens, Kristine (Eds.) Watervoerende lagen en grondwater in Belgïe - Aquifères et eaux souterraines en Belgique (2014)

Detailed reference viewed: 48 (24 ULg)
Full Text
Peer Reviewed
See detailRemontées des nappes dans les anciens travaux miniers et activités de démergement - Modélisation hydrogéologique spécifique et exemple de la zone minière de Cheratte
Dassargues, Alain ULg; Wildemeersch, Samuel ULg; Orban, Philippe ULg et al

in Dassargues, Alain; Walraevens, Kristine (Eds.) Watervoerende lagen & grondwater in Belgïe – Aquifères & eaux souterraines en Belgique (2014)

Detailed reference viewed: 35 (10 ULg)
Full Text
See detailLanduse change and future flood risk: the influence of micro-scale spatial patterns (FloodLand) - 1st progress report
Dewals, Benjamin ULg; Bruwier, Martin ULg; El Saeid Mustafa, Ahmed Mohamed ULg et al

Report (2014)

The goal of the project FloodLand is to investigate the complex interactions between landuse change and future flood risk. Landuse change is assumed to be mainly driven by population growth and socio ... [more ▼]

The goal of the project FloodLand is to investigate the complex interactions between landuse change and future flood risk. Landuse change is assumed to be mainly driven by population growth and socio-economic factors. It affects future flood risk by altering catchment hydrology as well as vulnerability in the floodplains; but the feedback effect of (the perception of) changes in flood hazard on landuse evolution is also considered. The research is based on a chain of modelling tools, which represent parts of the natural and human systems, including: landuse change modelling, transportation modelling as an onset for the estimation of indirect flood damage, continuous hydrological modelling (forced by precipitation and temperature data disturbed according to climate change scenarios), as well as efficient hydraulic modelling of inundation flow in the floodplains. Besides reproducing a broad spectrum of processes, the modelling approach spans over multiple scales, from the regional or catchment level down to the floodplain and building levels. This distinctive feature is reflected both within the individual models and through their combination involving fine-scale detailed analyses (or data) embedded within coarser models at a broader level. [less ▲]

Detailed reference viewed: 25 (15 ULg)
Full Text
See detailThermal tracer tests for characterizing a shallow alluvial aquifer
Wildemeersch, Samuel ULg; Klepikova, Maria ULg; Jamin, Pierre ULg et al

in Geophysical Research Abstracts (2014, April 28)

Using heat as an active tracer in different types of aquifers is a topic of increasing interest [e.g. Vandenbohede et al.; 2008, Wagner et al., 2013; Read et al., 2013]. In this study, we investigate the ... [more ▼]

Using heat as an active tracer in different types of aquifers is a topic of increasing interest [e.g. Vandenbohede et al.; 2008, Wagner et al., 2013; Read et al., 2013]. In this study, we investigate the potential interest of coupling heat and solute tracer tests for characterization of a shallow alluvial aquifer. A thermal tracer test was conducted in the alluvial aquifer of the Meuse River, Belgium. The tracing experiment consisted in simultaneously injecting heated water and a dye tracer in a piezometer and monitoring the evolution of groundwater temperature and tracer concentration in the recovery well and in nine monitoring wells located according to three transects with regards to the main groundwater flow direction. The breakthrough curves measured in the recovery well showed that heat transfer in the alluvial aquifer is slower and more dispersive than solute transport. Recovery is very low for heat while in the same time it is measured as relatively high for the solute tracer. This is due to the fact that heat diffusion is larger than molecular diffusion, implying that exchange between groundwater and the porous medium matrix is far more significant for heat than for solute tracers. Temperature and concentrations in the recovery well are then used for estimating the specific heat capacity with the energy balance approach and the estimated value is found to be consistent with those found in the literature. Temperature breakthrough curves in other piezometers are contrasted with what would be expected in an ideal layered aquifer. They reveal strongly unequal lateral and vertical components of the transport mechanisms. By means of a numerical heat transport model, we provide a preliminary interpretation of these temperature breakthrough curves. Furthermore, these data could be included in the calibration of a complex heat transfer model for estimating the entire set of heat transfer parameters and their spatial distribution by inverse modeling. [less ▲]

Detailed reference viewed: 30 (3 ULg)
Full Text
Peer Reviewed
See detailApplication of isotopic tracers as a tool for understanding hydrodynamic behavior of the highly exploited Diass aquifer system (Senegal)
Madioune, Diakher Hélène; Faye, Serigne; Orban, Philippe ULg et al

in Journal of Hydrology (2014), 511

The Diass horst aquifer system located 50 km east of Dakar (Senegal) is exploited in two main aquifers covered by a sandy superficial aquifer: the confined/unconfined Palaeocene karstic limestone and the ... [more ▼]

The Diass horst aquifer system located 50 km east of Dakar (Senegal) is exploited in two main aquifers covered by a sandy superficial aquifer: the confined/unconfined Palaeocene karstic limestone and the confined Maastrichtian sandstone aquifer underneath. This system has experienced intensive groundwater abstraction during the last 50 years to supply increasing water demand, agricultural and industrial needs. The high abstraction rate from 1989 to 2009 (about 109,000 m3/d) has caused a continuous groundwater level decline (up to 30 m), a modification of the groundwater flow and salinization in parts of the aquifers. The objective of the study is to improve our understanding of the system functioning with regards to high pumping, identify the geochemical reactions that take place in the system, infer origin and timing of recharge by using mainly stable (δ18O, δ2H, 13C) and radioactive (3H and 14C) isotopes. Water types defined in the Piper diagram vary in order of abundance from Ca–HCO3 (65%), Ca/Na–Cl (20%), Na–HCO3 (3%) and Na–Cl (12%). Values of δ18O and δ2H for the superficial aquifer range between −5.8 and −4.2‰ and between −42 and −31‰, respectively. For the Palaeocene aquifer they range from −5.8 to −5.0‰ and from −38 to −31‰, respectively; values in the Maastrichtian aquifer are between −5.9 and −4.3‰ for δ18O and −38 to −26‰ for δ2H. Plotted against the conventional δ18O vs δ2H diagram, data from the upper aquifer exhibit a dispersed distribution with respect to isotopic fractionation while those of the Palaeocene and Maastrichtian aquifers are aligned parallel and slightly below/or on the Global Meteoric Water Line (GMWL) evidencing ancient waters which had evaporated during infiltration. The low tritium (generally <0.7 TU) and 14C (0.7–57.2 pmc) contents indicate predominance of older water being recharged during the Pleistocene and Holocene periods. However, few boreholes which exhibit high tritium (1.2–4.3 TU) and 14C (65.7–70.8 pmc) values indicate some mixture with recent water likely through faulting and vertical drainage from the upper to deeper aquifers as well as lateral flow along flow paths to the piezometric depressions created by pumping. [less ▲]

Detailed reference viewed: 47 (6 ULg)