References of "Orban, Philippe"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailAn old slate mine as lower reservoir for UPSH (Underground Pumping Storage Hydroelectricity)- groundwater interactions and limitations
Bodeux, Sarah ULg; Pujades, Estanislao ULg; Orban, Philippe ULg et al

Conference (2016, September 27)

Renewable energy sources have an increasing role to play in the future energy framework but their intermittence cannot afford a stable production according to the demand. Pumped Storage Hydroelectricity ... [more ▼]

Renewable energy sources have an increasing role to play in the future energy framework but their intermittence cannot afford a stable production according to the demand. Pumped Storage Hydroelectricity (PSH) is an efficient technology to store and release electricity. However, the development of new PSH plants is limited by environmental and topographic constraints. An innovative alternative consists in using old underground mines as lower reservoirs of Underground Pumped Storage Hydroelectricity (UPSH) plants. In this configuration, large amount of water is pumped and injected in underground cavities and these cyclic stresses impact the groundwater system. A hybrid 3D finite element mixing cell method is used to numerically simulate the use of an UPSH facility, in the case of an abandoned slate mine. Different scenarios are computed with varying pumping injection time-sequences. In order to assess the impact on the surrounding groundwater conditions, the resulting head evolution in the cavity and at different distances is analyzed in terms of groundwater oscillation magnitude, drawdown, and seepage into the cavity. Results show clearly the influence of the pumping injection time-sequence (rates, regularity, timing and duration of no-activity periods) on the actual head evolution in the surrounding medium and consequently on the magnitude of interactions with the cavity. For a given hydraulic conductivity of the surrounding medium (i.e. slates in this case study), the main conclusion is that the resulting interaction seepage flows (in and out of the cavity) are highly dependent on the chosen pumping injection sequences. The future impact of UPSH operation must be assessed taking this fact into account. [less ▲]

Detailed reference viewed: 18 (3 ULg)
Full Text
Peer Reviewed
See detailInfluence of groundwater exchanges on the efficiency of Underground Pumped Storage Hydroelectricity plants using open pit mines
Pujades, Estanislao ULg; Bodeux, Sarah ULg; Orban, Philippe ULg et al

Poster (2016, September 27)

Underground Pumped Storage Hydropower (UPSH) plants can be used to manage the production of electrical energy according to the demand. These plants consist in two reservoirs, the upper one is located at ... [more ▼]

Underground Pumped Storage Hydropower (UPSH) plants can be used to manage the production of electrical energy according to the demand. These plants consist in two reservoirs, the upper one is located at the surface while the lower one is underground. The energy is stored by pumping water from the lower to the upper reservoir and produced by releasing water from the upper to the lower one. As a result, the hydraulic head in the lower reservoir varies continuously. UPSH plants interact with the surrounding aquifers exchanging groundwater. These groundwater exchanges, which play an important role in the evolution of the hydraulic head inside the underground reservoir, are a fact of concern in the selection of pumps and turbines because their efficiency varies with respect to the head difference between the two reservoirs. Therefore, the aquifer parameters should be considered in the selection of pumps and turbines. In this context, with an UPSH plant made up by an open pit mine, we study numerically (1) the influence of groundwater exchanges on the efficiency and (2) how the hydraulic head evolution varies depending on the aquifer properties. The relation among the groundwater exchanges, the efficiency of pumps and turbines and the aquifer parameters is considered by comparing the numerical results of several simulations. It is shown that groundwater exchanges are not negligible when optimizing the efficiency of UPSH plants. A priori, low hydraulic conductivity geological media were preferred to decrease interactions with the open-pit or the cavity used as lower reservoir. Taking into account the pump/turbine performance curves, it appears that, on the contrary, the global efficiency would be increased if the surrounding medium facilitates large groundwater exchanges because hydraulic head variations are softened. [less ▲]

Detailed reference viewed: 18 (6 ULg)
Full Text
Peer Reviewed
See detailComparison of temperature from DTS and ERT with direct measurements during heat tracer experiments in heterogeneous aquifers
Nguyen, Frédéric ULg; Hermans, Thomas ULg; Jamin, Pierre ULg et al

Conference (2016, September 27)

Geothermal field characterization and heat tracer experiments often rely on scarce temperature data collected in boreholes. Electrical resistivity tomography (ERT) and distributed temperature sensing (DTS ... [more ▼]

Geothermal field characterization and heat tracer experiments often rely on scarce temperature data collected in boreholes. Electrical resistivity tomography (ERT) and distributed temperature sensing (DTS) have the potential to provide spatial information on temperature changes in the subsurface. In this contribution, we show how DTS and ERT have been used to investigate the heterogeneity of a heterogeneous aquifer during a heat tracing experiment under forced gradient conditions. Optic fibers were installed in the heat injection well and in two piezometers intersecting the main flow directions at 8 m from the injection well. These piezometers were also equipped with ERT. The DTS measurement in the injection well clearly shows the two-layer nature of the aquifer. After the end of injection, the temperature in the bottom part of the well decreases faster than in the upper part due to the higher water fluxes. Those results are confirmed by DTS measurements in natural flow conditions during a heating wire test. DTS and ERT in the cross-panel both show the vertical and lateral heterogeneity of the aquifer. Temperatures only increase significantly in the bottom part of the aquifer where advection is predominant. However, strong differences are observed laterally. ERT additionally shows that the hot plume is divided in two main flow paths, which is confirmed by direct temperature measurements. The comparison of DTS and ERT shows that one of the well is suffering from water mixing. Indeed, temperature from DTS are homogeneous over the whole tichkness of the aquifer, whereas ERT temperature, less affected by local variations, are varying. Our study demonstrate the value of spatially distributed measurements for the monitoring of heat tracer experiment and highligths the issue of multilevel sampling. The detailed temperature measurements can be subsequently used in hydrogeological model to better estimates heat flow and transport parameters. [less ▲]

Detailed reference viewed: 23 (5 ULg)
Full Text
Peer Reviewed
See detailGroundwater flow and saltwater intrusion modelling in the Continental Terminal (CT) aquifer near the Saloum inverse estuary in Senegal
Faye, Serigne; Ndeye, Maguette Dieng; Orban, Philippe ULg et al

Conference (2016, September 26)

The Saloum River hypersaline estuary (Senegal) is an ‘inverse estuary’ showing a salinity increasing from the river mouth towards inland. This salinization process is mainly driven by a net loss of ... [more ▼]

The Saloum River hypersaline estuary (Senegal) is an ‘inverse estuary’ showing a salinity increasing from the river mouth towards inland. This salinization process is mainly driven by a net loss of freshwater due to intense evaporation. In this context, interactions between the river and the surrounding aquifer of the Continental Terminal (CT) may lead to local and progressive salinization of this groundwater main resource for water supply. Our study, based on available data and new measured data in 2012 and 2013, is focused on the southern part of the Saloum basin. It confirms that the groundwater resource is threatened by local saltwater intrusions in the vicinity of the Saloum River and along the western coastal part of the aquifer. For a long term water resources management, it is thus essential to predict the future evolution of this process in a context of increasing groundwater pumping rate together with climate variability and changes. A groundwater flow model is developed using MODFLOW. Starting from a conceptual steady-state situation corresponding to the CT aquifer state in 1973 before development of pumping, a transient calibration of the groundwater flow model is performed on data from 1974 to 2012. Despite the low number of measured data, the model can be considered as the current best assessment tool for future predictions. Using the particle tracking technique (MODPATH), a first assessment of the saltwater intrusions in the aquifer is simulated (neglecting the density effect on the hydraulic conductivity) confirming the measured data. Results, for an increased pumping of 20% in 2050 combined with different climatic scenarios, are useful to assess how the saltwater intrusions will evolve in the next years. [less ▲]

Detailed reference viewed: 14 (0 ULg)
Full Text
Peer Reviewed
See detailHow groundwater interactions can influence UPSH (Underground Pumping Storage Hydroelectricity) operations
Bodeux, Sarah ULg; Pujades, Estanislao ULg; Orban, Philippe ULg et al

Conference (2016, July 28)

In the current energy grid, renewable energy has an increasing role to play. However, their intermittence cannot afford to regulate the produced electricity according to the irregular demand (Evans et al ... [more ▼]

In the current energy grid, renewable energy has an increasing role to play. However, their intermittence cannot afford to regulate the produced electricity according to the irregular demand (Evans et al., 2012). Pumped Storage Hydroelectricity (PSH) is a well-known efficient technology to store and release electricity according to the demand needs but appropriate potential new sites are getting scarce (Steffen, 2012). An innovative alternative consists in using abandoned mines as lower reservoir of an Underground Pumping Storage Hydroelectricity (UPSH) plant. In such configuration, large amount of water will be pumped or injected in underground cavities, creating subsequently head oscillations in the surrounding aquifers. Consequently, this seepage occurring between the considered cavity and the varying groundwater heads in the surrounding geological medium may influence the efficiency of the UPSH plant but also the magnitude of the potential impacts on the groundwater resources. A hybrid 3D finite element mixing cell method (Brouyère et al., 2009) is used to simulate numerically the use of a representative UPSH cavity and calculate the induced changes in groundwater heads in the surrounding geological medium. Different scenarios are computed varying parameter values (hydrogeological and lower reservoir characteristics), boundary conditions, and pumping/injection time-sequences. By analyzing the computed piezometric heads at different distances from the underground reservoir, the magnitude of the aquifer response to pumping storage operations is assessed. The most expected and noticeable effect is the oscillation of groundwater levels. The existence a mean pseudo/ dynamic steady-state and the required time to reach it are also determined. The head difference and its time evolution between the cavity and the surrounding medium is triggering the leakage of groundwater into the cavity or the contrary. The resulting effects on the UPSH plant efficiency can be estimated. Combining these outcomes, some feasibility criteria of this type of projects are identified. Going into practice, further models should include more in de-tails local and specific geometrical and hydrogeolog-ical data of the considered old mine cavities used as lower reservoir. This kind of modelling approach can be used as a first approach for determining how the aquifer will response to short and long term changes in UPSH pumping/injection schemes. [less ▲]

Detailed reference viewed: 45 (11 ULg)
Full Text
See detailGroundwater flow and transport modelling at regional scale: lessons learned from different applications in the Walloon Meuse basin
Dassargues, Alain ULg; Goderniaux, Pascal; Orban, Philippe ULg et al

Conference (2016, July 28)

An overview is proposed of the recent groundwater modelling works, at the groundwater body scale, performed by the Hydrogeology & Environmental Geology team of the University of Liège. The developed ... [more ▼]

An overview is proposed of the recent groundwater modelling works, at the groundwater body scale, performed by the Hydrogeology & Environmental Geology team of the University of Liège. The developed modelling tools are built in the general objective of improving our understanding and management, at short, middle and long terms, of the groundwater bodies. The general strategy to be followed implies that conceptualization, parameterization and calibration must be adapted to the actual objectives of each model (Wildemeersch et al., 2014). 3 specific applications are illustrated involving two main groundwater bodies: - application of the HFEMC method (Wildemeersch et al., 2010) within the SUFT3D code for groundwater flow modelling of the ‘Synclinorium of Dinant’ (Orban et al., 2010 and Brouyère et al., 2011); - application of the HFEMC method and the SUFT3D code for the nitrate trends (Batlle-Aguilar et al., 2007) simulations in the Geer basin (Orban et al., 2010) for different scenarios of nitrate inputs; - application of the HGS integrated model for assessing the impact of climate change on the groundwater reserves in the Geer basin (Brouyère et al., 2004, Goderniaux et al., 2009 and 2011) with quantification and comparison of the different uncertainty sources (Goderniaux et al., 2015) Lessons and perspectives are learned and proposed from these modelling experiences at the scale of the groundwater body. [less ▲]

Detailed reference viewed: 50 (7 ULg)
Full Text
Peer Reviewed
See detailNitrate dynamic and pathways in fractured limestone aquifers : From soil leaching to groundwater discharge in surface water
Briers, Pierre ULg; Schmit, Flore; Orban, Philippe ULg et al

Conference (2016, July 27)

Fractured – karstified limestone aquifers constitute important, but vulnerable groundwater reservoirs in many areas across the World. Such carbonate systems are highly heterogeneous leading to a high ... [more ▼]

Fractured – karstified limestone aquifers constitute important, but vulnerable groundwater reservoirs in many areas across the World. Such carbonate systems are highly heterogeneous leading to a high spatial and temporal variability of fluxes across the soil – vadose zone – groundwater – surface water continuum. One of the main challenges worldwide is to protect such groundwater bodies from diffuse pollutions, in particular agricultural chemicals such as nitrate. To face such problems and to propose adequate pollution mitigation scenarios, the objective here was to better understand and quantify nitrate dynamics and pathways in the subsurface and at the groundwater – surface water interface. The transfer of nitrate was investigated in different ways such as monitoring of concentrations in both groundwater and surface water, tracer experiments in the unsaturated – saturated continuum and regional investigations on groundwater chemistry including stable isotopes of nitrate and other compounds. Results show that nitrate concentrations are relatively stable both in groundwater and surface water during the low flow period (i.e. from spring to autumn). A temporary but significant increase in nitrate concentration is observed in groundwater and rivers during the winter, related to release of residual nitrate from agricultural soils driven by infiltration water. In period of high precipitations and runoff, dilution is measured in the river. Monitoring and tracer test results also highlight the fact that the migration of dissolved contaminants across the unsaturated zone of limestone rocks is very fast and governed by gravitational flows. In the rivers, macroinvertebrates and benthic diatoms were sampled at several sites to assess ecological status and structural and functional response to alteration of water quality (nutrient enrichment) and quantity (current velocity and stream habitats). Diatom indices and community structure indicated good to very good status in both studied streams, indicating that elevated nitrate concentration have no detectable effect on biological quality of the surface waters. The combination of all these results allows developing a detailed conceptual model of the dynamics of nitrate (and other agricultural contaminants) in fractured / karstified limestone aquifers, with improved estimates of nitrate trends and dynamics in both groundwater and rivers. [less ▲]

Detailed reference viewed: 67 (10 ULg)
Full Text
Peer Reviewed
See detailFactors controlling spatial patterns and time trends of multiple pesticides in groundwater (Hesbaye chalk aquifer, Belgium)
Hakoun, Vivien ULg; Orban, Philippe ULg; Dassargues, Alain ULg et al

Conference (2016, July 25)

Groundwater contamination by pesticides compounds (parent and degradation by-products) is a well identified environmental issue, however factors influencing their spatial patterns and time trends remain ... [more ▼]

Groundwater contamination by pesticides compounds (parent and degradation by-products) is a well identified environmental issue, however factors influencing their spatial patterns and time trends remain unclear. In this context, 18 years long time series (1996-2013) of 3 banned (atrazine, diuron, simazine), 2 metabolites (deethyaltrazine –DEA, and 2,6-dichlorobenzamide –BAM) and one regulated (bentazone) pesticides compounds are explored, taking into account concentrations below detection limits. Using a bivariate and multivariate (PCA and hierarchical clustering) statistical framework, these time series are related to nitrate (NO3-) and the fraction of young water recharged since 50 years, land use, to aquifer settings (i.e. confining conditions, thickness of the unsaturated zone) and to groundwater table fluctuations. Results show that pesticides compounds are always below detection limits in the confined area where old groundwater lies. However these compounds are detected every year in the unconfined zone with maximal concentrations exceeding the current European water drinking standard of 100 ng.L-1 every year since 2007 for atrazine. We find the greatest significant (p-value < 0.05) positive correlations between the trio atrazine-DEA (tau=0.62), atrazine-NO3- (tau=0.48) and DEA-NO3- (tau=0.49). We identify positive correlations between most compounds, atrazine (tau=0.44), bentazone (tau=0.36), simazine (tau=0.71); DEA (tau=0.58) and BAM (tau=0.44), and water table fluctuations with periods spanning several years. We determine two groups (6 and 9 sites each) of site which relate to the discharge and recharge areas. Sites from the recharge area where higher diuron, simazine and BAM concentrations occurs correlate with a dense localized urban area. Atrazine and bentazone relates to sites with thin unsaturated zones and high mixing in the wells. Our analysis reveals critical factors affecting 7 pesticides compounds. It improves our understanding of the interplay between land use, aquifer settings and transient processes (water fluctuations) on controlling pesticides concentrations in groundwater. [less ▲]

Detailed reference viewed: 81 (8 ULg)
Full Text
Peer Reviewed
See detailHydrogeochemical mechanisms driving the occurrence of elevated fluoride contents in crystalline aquifers in Benin, Western Africa
Tossou, Yao ULg; Orban, Philippe ULg; Gesels, Julie ULg et al

Conference (2016, July 24)

Elevated concentrations of fluoride in drinking water is the source of severe healthy problems such as dental or skeletal fluorosis. High concentrations of fluoride are often observed in fractured and ... [more ▼]

Elevated concentrations of fluoride in drinking water is the source of severe healthy problems such as dental or skeletal fluorosis. High concentrations of fluoride are often observed in fractured and altered crystalline aquifers around the world. However, the hydrogeochemical mechanisms leading to such elevated fluoride concentrations are usually not fully understood. In particular, it is important to make the link between these elevated concentrations and the geological context in order to make efficient recommendations on appropriate locations of further groundwater abstraction wells. This is the case in Benin, Western Africa, where groundwater from crystalline bed-rock aquifers is the main source for drinking-water supply. In this context, this research aims to identify the hydrogeochemical processes governing groundwater mineralization and the origin of the high fluoride concentrations. The investigations are based on groundwater samples collected in the central part of the country (Department of Collines), characterized by hard Precambrian aquifers. The hydrogeological system consists of a thin altered bedrock layer (shallow aquifer) and a deeper fractured crystalline bedrock (deep aquifer). The most significant groundwater quality problems in the area relate to the high fluoride (more than 7 mg / l) and nitrate (over 400 mg / l) concentrations in groundwater. The collected hydrogeochemical dataset was explored using geochemical approaches and multivariate statistics. The results reveal that the water mineralization derives from hydrolysis of silicate minerals, but it is also influenced by anthropogenic effects, particularly in the shallow reservoir. However, fluoride has a natural origin, essentially related to weathering of silicate minerals, mainly from biotite. Ion exchanges between groundwater and the rock matrix also contributes to increase fluoride concentrations in groundwater. Earlier saturation of water with calcite and the precipitation of this mineral due to bicarbonate excess reduce calcium activity are favorable of the release of fluoride by rocks. Further investigations are going on to make the link between crystalline rock types, associated primary minerals and fluoride concentrations in order to identify the geological contexts which are more prone to such problems. [less ▲]

Detailed reference viewed: 18 (7 ULg)
Full Text
Peer Reviewed
See detailHeat tracer test in an alluvial aquifer: field experiment and inverse modelling
Klepikova, Maria; Wildemeersch, Samuel; Hermans, Thomas ULg et al

in Journal of Hydrology (2016), 540

Using heat as an active tracer for aquifer characterization is a topic of increasing interest. In this study, we investigate the potential of using heat tracer tests for characterization of a shallow ... [more ▼]

Using heat as an active tracer for aquifer characterization is a topic of increasing interest. In this study, we investigate the potential of using heat tracer tests for characterization of a shallow alluvial aquifer. A thermal tracer test was conducted in the alluvial aquifer of the Meuse River, Belgium. The tracing experiment consisted in simultaneously injecting heated water and a dye tracer in an injection well and monitoring the evolution of groundwater temperature and tracer concentration in the pumping well and in measurement intervals. To get insights in the 3D characteristics of the heat transport mechanisms, temperature data from a large number of observation wells closely spaced along three transects were used. Temperature breakthrough curves in observation wells are contrasted with what would be expected in an ideal layered aquifer. They reveal strongly unequal lateral and vertical components of the transport mechanisms. The observed complex behavior of the heat plume is explained by the groundwater flow gradient on the site and heterogeneities in the hydraulic conductivity field. Moreover, due to high injection temperatures during the field experiment a temperature-induced fluid density effect on heat transport occurred. By using a flow and heat transport numerical model with variable density coupled with a pilot point approach for inversion of the hydraulic conductivity field, the main preferential flow paths were delineated. The successful application of a field heat tracer test at this site suggests that heat tracer tests is a promising approach to image hydraulic conductivity field. This methodology could be applied in aquifer thermal energy storage (ATES) projects for assessing future efficiency that is strongly linked to the hydraulic conductivity variability in the considered aquifer. [less ▲]

Detailed reference viewed: 57 (21 ULg)
Full Text
Peer Reviewed
See detailUnderground pumped storage hydroelectricity using abandoned works (deep mines or open pits) and the impact on groundwater flow
Pujades, Estanislao ULg; Willems, Thibault ULg; Bodeux, Sarah ULg et al

in Hydrogeology Journal (2016)

Underground pumped storage hydroelectricity (UPSH) plants using open-pit or deep mines can be used in flat regions to store the excess of electricity produced during low-demand energy periods. It is ... [more ▼]

Underground pumped storage hydroelectricity (UPSH) plants using open-pit or deep mines can be used in flat regions to store the excess of electricity produced during low-demand energy periods. It is essential to consider the interaction between UPSH plants and the surrounding geological media. There has been little work on the assessment of associated groundwater flow impacts. The impacts on groundwater flow are determined numerically using a simplified numerical model which is assumed to be representative of open-pit and deep mines. The main impact consists of oscillation of the piezometric head, and its magnitude depends on the characteristics of the aquifer/geological medium, the mine and the pumping and injection intervals. If an average piezometric head is considered, it drops at early times after the start of the UPSH plant activity and then recovers progressively. The most favorable hydrogeological conditions to minimize impacts are evaluated by comparing several scenarios. The impact magnitude will be lower in geological media with low hydraulic diffusivity; however, the parameter that plays the more important role is the volume of water stored in the mine. Its variation modifies considerably the groundwater flow impacts. Finally, the problem is studied analytically and some solutions are proposed to approximate the impacts, allowing a quick screening of favorable locations for future UPSH plants. [less ▲]

Detailed reference viewed: 42 (22 ULg)
Full Text
See detailMines as lower reservoir of an UPSH (Underground Pumped Storage Hydroelectricity): groundwater impacts and feasibility
Bodeux, Sarah ULg; Pujades, Estanislao ULg; Orban, Philippe ULg et al

Poster (2016, April 20)

The energy framework is currently characterized by an expanding use of renewable sources. However, their inter- mittence could not afford a stable production according to the energy demand. Pumped Storage ... [more ▼]

The energy framework is currently characterized by an expanding use of renewable sources. However, their inter- mittence could not afford a stable production according to the energy demand. Pumped Storage Hydroelectricity (PSH) is an efficient possibility to store and release electricity according to the demand needs. Because of the topographic and environmental constraints of classical PSH, new potential suitable sites are rare in countries whose topography is weak or with a high population density. Nevertheless, an innovative alternative is to construct Underground Pumped Storage Hydroelectricity (UPSH) plants by using old underground mine works as lower reservoir. In that configuration, large amount of pumped or injected water in the underground cavities would impact the groundwater system. A representative UPSH facility is used to numerically determine the interactions with surrounding aquifers Different scenarios with varying parameters (hydrogeological and lower reservoir char- acteristics, boundaries conditions and pumping/injection time-sequence) are computed. Analysis of the computed piezometric heads around the reservoir allows assessing the magnitude of aquifer response and the required time to achieve a mean pseudo-steady state under cyclic solicitations. The efficiency of the plant is also evaluated taking the leakage into the cavity into account. Combining these two outcomes, some criterions are identified to assess the feasibility of this type of projects within potential old mine sites from a hydrogeological point of view. [less ▲]

Detailed reference viewed: 28 (8 ULg)
Full Text
Peer Reviewed
See detailHeat tracer test in an alluvial aquifer: field experiment and inverse modelling
Klepikova, Maria; Wildemeersch, Samuel; Jamin, Pierre ULg et al

Poster (2016, April 20)

Using heat as an active tracer for aquifer characterization is a topic of increasing interest. In this study, we investigate the potential of using heat tracer tests for characterization of a shallow ... [more ▼]

Using heat as an active tracer for aquifer characterization is a topic of increasing interest. In this study, we investigate the potential of using heat tracer tests for characterization of a shallow alluvial aquifer. A thermal tracer test was conducted in the alluvial aquifer of the Meuse River, Belgium. The tracing experiment consisted in simultaneously injecting heated water and a dye tracer in a piezometer and monitoring the evolution of groundwater temperature and tracer concentration in the recovery well and in monitoring wells. To get insights in the 3D characteristics of the heat transport mechanisms, temperature data from a large number of observation wells distributed throughout the field site (space-filling arrangement) were used. Temperature breakthrough curves in observation wells are contrasted with what would be expected in an ideal layered aquifer. They reveal strongly unequal lateral and vertical components of the transport mechanisms. The observed complex behavior of the heat plume was explained by the groundwater flow gradient on the site and heterogeneity of hydraulic conductivity field. Moreover, due to high injection temperatures during the field experiment a temperature-induced fluid density effect on heat transport occurred. By using a flow and heat transport numerical model with variable density coupled with the pilot point inverse approach, main preferential flow paths were delineated. [less ▲]

Detailed reference viewed: 89 (16 ULg)
Full Text
Peer Reviewed
See detailUnderground Pumped Storage Hydropower using abandoned open pit mines: influence of groundwater seepage on the system efficiency
Pujades, Estanislao ULg; Bodeux, Sarah ULg; Orban, Philippe ULg et al

Poster (2016, April)

Pumped Storage Hydropower (PSH) plants can be used to manage the production of electrical energy according to the demand. These plants allow storing and generating electricity during low and high demand ... [more ▼]

Pumped Storage Hydropower (PSH) plants can be used to manage the production of electrical energy according to the demand. These plants allow storing and generating electricity during low and high demand energy periods, respectively. Nevertheless, PSH plants require a determined topography because two reservoirs located at different heights are needed. At sites where PSH plants cannot be constructed due to topography requirements (flat regions), Underground Pumped Storage Hydropower (UPSH) plants can be used to adjust the electricity production. These plants consist in two reservoirs, the upper one is located at the surface (or at shallow depth) while the lower one is underground (or deeper). Abandoned open pit mines can be used as lower reservoirs but these are rarely isolated. As a consequence, UPSH plants will interact with surrounding aquifers exchanging groundwater. Groundwater seepage will modify hydraulic head inside the underground reservoir affecting global efficiency of the UPSH plant. The influence on the plant efficiency caused by the interaction between UPSH plants and aquifers will depend on the aquifer parameters, underground reservoir properties and pumping and injection characteristics. The alteration of the efficiency produced by the groundwater exchanges, which has not been previously considered, is now studied numerically. A set of numerical simulations are performed to establish in terms of efficiency the effects of groundwater exchanges and the optimum conditions to locate an UPSH plant. [less ▲]

Detailed reference viewed: 31 (17 ULg)