References of "Ongena, Marc"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailKey impact of an uncommon plasmid on bacillus amyloliquefaciens subsp. plantarum S499 developmental traits and lipopeptide production
Molinatto, G.; Franzil, L.; Steels, Sébastien ULg et al

in Frontiers in Microbiology (2017), 8(JAN),

The rhizobacterium Bacillus amyloliquefaciens subsp. plantarum S499 (S499) is particularly efficient in terms of the production of cyclic lipopeptides, which are responsible for the high level of plant ... [more ▼]

The rhizobacterium Bacillus amyloliquefaciens subsp. plantarum S499 (S499) is particularly efficient in terms of the production of cyclic lipopeptides, which are responsible for the high level of plant disease protection provided by this strain. Sequencing of the S499 genome has highlighted genetic differences and similarities with the closely related rhizobacterium B. amyloliquefaciens subsp. plantarum FZB42 (FZB42). More specifically, a rare 8008 bp plasmid (pS499) harboring a rap-phr cassette constitutes a major distinctive element between S499 and FZB42. By curing this plasmid, we demonstrated that its presence is crucial for preserving the typical physiology of S499 cells. Indeed, the growth rate and extracellular proteolytic activity were significantly affected in the cured strain (S499 P-). Furthermore, pS499 made a significant contribution to the regulation of cyclic lipopeptide production. Surfactins and fengycins were produced in higher quantities by S499 P-, whereas lower amounts of iturins were detected. In line with the increase in surfactin release, bacterial motility improved after curing, whereas the ability to form biofilm was reduced in vitro. The antagonistic effect against phytopathogenic fungi was also limited for S499 P-, most probably due to the reduction of iturin production. With the exception of this last aspect, S499 P- behavior fell between that of S499 and FZB42, suggesting a role for the plasmid in shaping some of the phenotypic differences observed in the two strains. © 2017 Molinatto, Franzil, Steels, Puopolo, Pertot and Ongena. [less ▲]

Detailed reference viewed: 21 (1 ULg)
Full Text
Peer Reviewed
See detailThe Effect of Nutrients on the Degradation of Hydrocarbons in Mangrove Ecosystems by Microorganisms
Semboung Lang, Firmin ULg; Tarayre, Cédric ULg; Destain, Jacqueline ULg et al

in International Journal of Environmental Research (2016), 10(4), 583-592

Mangrove ecosystems are areas prone to various types of pollution, especially hydrocarbons. These hydrocarbons mostly stem from human activities such as spills coming from offshore oil operations, runoff ... [more ▼]

Mangrove ecosystems are areas prone to various types of pollution, especially hydrocarbons. These hydrocarbons mostly stem from human activities such as spills coming from offshore oil operations, runoff from surrounding urban areas or atmospheric deposition. This pollution causes the decline of mangroves, which results in an imbalance in the functioning of this particular ecosystem with damages to the microbiota. Biodegradation allows to restore these ecosystems. This biodegradation can only be effective in specific environmental conditions. The presence of nutrients, which stimulate bacterial growth and promote biodegradation, is a key parameter to be considered. During this experiment, we achieved biodegradation tests to assess the effect of nitrogen and phosphorus on the process. The results showed that the biodegradation rates were strongly bound to the presence of nutrients. The degradation rates depended on the medium. The treatment that reached the best rate of degradation of diesel after 10 days was the one using 20% of a nutrient solution (MSM) containing nitrogen and phosphorus. This treatment led to a maximal degradation of 84.7% ± 4.7% obtained in the flasks containing 20% of a nutrient solution (MSM) containing nitrogen and phosphorus. [less ▲]

Detailed reference viewed: 29 (4 ULg)
Full Text
Peer Reviewed
See detailBiodegradation of Polycyclic Aromatic Hydrocarbons in Mangrove Sediments Under Different Strategies: Natural Attenuation, Biostimulation, and Bioaugmentation with Rhodococcus erythropolis T902.1
Semboung Lang, Firmin ULg; Destain, Jacqueline ULg; Delvigne, Frank ULg et al

in Water, Air & Soil Pollution (2016)

Polycyclic aromatic hydrocarbons (PAHs) are pollutants that occur in mangrove sediments. Their removal by bacteria often depends on specific characteristics as the number of benzene rings they possess and ... [more ▼]

Polycyclic aromatic hydrocarbons (PAHs) are pollutants that occur in mangrove sediments. Their removal by bacteria often depends on specific characteristics as the number of benzene rings they possess and their solubility. Their removal also depends on environmental factors, such as pH, temperature, oxygen, and the ability of the endogenous or exogenous microflora to metabolize hydrocarbons.With the aim of treating mangrove sediments polluted by hydrocarbons in a biological way, a biodegradation experiment was conducted using mangrove sediments artificially contaminated with a mixture of four PAHs. The study used Rhodococcus erythropolis as an exogenous bacterial strain in order to assess the biodegradation of the PAH mixture by natural attenuation, biostimulation, bioaugmentation, and a combination of biostimulation and bioaugmentation. The results showed that the last three treatments were more efficient than natural attenuation. The biostimulation/bioaugmentation combination proved to be the most effective PAH degradation treatment. [less ▲]

Detailed reference viewed: 21 (1 ULg)
See detailCaractérisation des mécanismes impliqués dans la perception de rhamnolipides naturels et synthétiques chez Arabidopsis thaliana
Luzuriaga Loaiza, Walter ULg; Schellenberger, Romain; Obounou Akong, Firmin et al

Scientific conference (2016, July 05)

Detailed reference viewed: 56 (2 ULg)
Full Text
Peer Reviewed
See detailFrom Valeriana officinalis to cancer therapy: the success of a bio-sourced compound
Hamaïdia, Malik ULg; Barez, Pierre-Yves ULg; Carpentier, Alexandre ULg et al

in Biotechnologie, Agronomie, Société et Environnement = Biotechnology, Agronomy, Society and Environment (2016), 20

Over the centuries, bio-sourced compounds isolated from plants, insects and microorganisms have been a potent source of drugs for the treatment of human diseases. In this review, we recapitulate the story ... [more ▼]

Over the centuries, bio-sourced compounds isolated from plants, insects and microorganisms have been a potent source of drugs for the treatment of human diseases. In this review, we recapitulate the story of one of these compounds, 2-propylpentanoic acid, derived from the Valeriana officinalis flowering plant and its path to validation as a cancer treatment. [less ▲]

Detailed reference viewed: 198 (53 ULg)
Peer Reviewed
See detailLeachate and leonardite Humic substances effect on in vitro root initiation and elongation of woody species
Tahiri, Abdelghani ULg; Destain, Jacqueline ULg; Thonart, Philippe ULg et al

Poster (2016, February 05)

Arise from the chemical and biological degradation of plant and animal residues and from the synthetic activities of microorganisms in the soil, humic substances (HS) are natural heterogeneous aromatic ... [more ▼]

Arise from the chemical and biological degradation of plant and animal residues and from the synthetic activities of microorganisms in the soil, humic substances (HS) are natural heterogeneous aromatic and organic compounds. These substances are chemically complex with no clearly defined chemical structure, although generalized models have been proposed. Present everywhere in the nature; they take part in basic functionalities in any ecosystems involving soils, sediments, water and landfills. They have long been recognized as plant growth promoting substances, particularly with regard to influencing nutrient uptake, root growth and architecture. They influence plant productivity directly by the stimulation of biochemical and metabolic processes or indirectly through the modification of soil characteristics and microflora activities. All together, these properties mainly affect root architecture by inducing root hairs proliferation, differentiating root cells and enhancing lateral root emergence. Experiments targeting the rooting stages in absence of interferences were conducted in vitro using HS extracted from landfill leachate and a stable commercial formulation (“Humifirst” from TRADECORP company: 12% humic acid and fulvic acid 3%) issued from leonardite. Shoots and leaves explants of silver birch (Betula pendula Roth) and black alder (Alnus glutinosa L. Gaertn) explants were treated with 10 ppm of leachate and leonardite HS for 5 days during the rooting induction/initiation phase or during rooting elongation phase. The results obtained show that treatment with a low concentration (10 ppm) during induction/initiation phase may be slightly unfavorable to the formation of roots in alder but not in birch. While, in root elongation phase, there is an increase in the number of roots per shoot only in birch. The direct effects of leachate and leonardite HS on root development vary from one species to another. [less ▲]

Detailed reference viewed: 102 (0 ULg)
Full Text
Peer Reviewed
See detailComparison of explant responses treated with leachate and leonardite sources of humic substances during in vitro rooting of woody plants.
Tahiri, Abdelghani ULg; Destain, Jacqueline ULg; Thonart, Philippe ULg et al

in Communications in Agricultural and Applied Biological Sciences (2016), 81(1), 158-165

As heterogeneous mixtures of compounds resulting from the physical, chemical and microbiological transformations of organic residues, humic substances (HS) are mostly recognized for their biostimulation ... [more ▼]

As heterogeneous mixtures of compounds resulting from the physical, chemical and microbiological transformations of organic residues, humic substances (HS) are mostly recognized for their biostimulation of plant growth that firstly involve the root development and architecture before further putative improvement of nutrients uptakes. To avoid the interferences currently reported from external origins, the successive steps of rooting have been carried out using shoots and isolated leaves of birch and alder vitro-plants. Extracts issued from landfill leachate (LHS) has been compared to a stable formulation from leonardite ("Humifirst" 12% humic acid 3% and fulvic acid) commercialized by TRADECORP company's (HHS). Chemical analysis showed that LHS source typically contain much higher N (mainly as ammonium (93%) and chloride concentration than HHS. Used at low concentration (10 ppm) during root induction/initiation phase, both HS sources may be slightly unfavorable to the root formation (21% of reduction in primary root number) of alder but not of birch. While, in root elongation phase, there is an increase in the primary root length and lateral root number. The direct effects of HS on in vitro root development vary from one species to another depending on the root treatment stage. Results showed that both explants type response are equivalent in the development of a complete rooting system. [less ▲]

Detailed reference viewed: 164 (4 ULg)
Full Text
Peer Reviewed
See detailCharacterization and Evaluation of the Potential of a Diesel-Degrading Bacterial Consortium Isolated from Fresh Mangrove Sediment
Semboung Lang, Firmin ULg; Destain, Jacqueline ULg; Delvigne, Frank ULg et al

in Water, Air & Soil Pollution (2016)

Hydrocarbons are ubiquitous and persistent organic pollutants in the environment. In wetlands and marine environments, particularly in mangrove ecosystems, their increase and significant accumulation ... [more ▼]

Hydrocarbons are ubiquitous and persistent organic pollutants in the environment. In wetlands and marine environments, particularly in mangrove ecosystems, their increase and significant accumulation result from human activities such as oil and gas exploration and exploitation operations. Remediation of these ecosystems requires the development of adequate and effective strategies. Natural attenuation, biostimulation, and bioaugmentation are all biological soil treatment techniques that can be adapted to mangroves. Our experiments were performed on samples of fresh mangrove sediments from the Cameroon estuary and mainly from the Wouri River in Cameroon. This study aims to assess the degradation potential of a bacterial consortium isolated from mangrove sediment. The principle of our bioremediation experiments is based on a series of tests designed to evaluate the potential of an active indigenous microflora and three exogenous pure strains, to degrade diesel with/without adding nutrients. The experiments were conducted in laboratory flasks and a greenhouse in microcosms. In one case, as in the other, the endogenous microflora showed that it was able to degrade diesel. Under stress of the pollutant, the endogenous microflora fits well enough in the middle to enable metabolism of the pollutant. However, the Rhodococcus strain was more effective over time. The degradation rate was 77 and 90%in the vials containing the sterile sediments and non-sterile sediments, respectively. The results are comparable with those obtained in the microcosms in a greenhouse where only the endogenous microflora were used. The results of this study show that mangrove sediment contains an active microflora that can metabolize diesel. Indigenous and active microflora show an interesting potential for diesel degradation. [less ▲]

Detailed reference viewed: 24 (2 ULg)
Full Text
Peer Reviewed
See detailComprehensive comparison of the chemical and structural characterization of landfill leachate and leonardite humic fractions
Tahiri, Abdelghani ULg; Richel, Aurore ULg; Destain, Jacqueline ULg et al

in Analytical and Bioanalytical Chemistry (2016), 408(7), 1917-1928

Humic substances (HS) are complex and heterogeneous mixtures of organic compounds that occur everywhere in the environment. They represent most of the dissolved organic matter in soils, sediments (fossil ... [more ▼]

Humic substances (HS) are complex and heterogeneous mixtures of organic compounds that occur everywhere in the environment. They represent most of the dissolved organic matter in soils, sediments (fossil), water, and landfills. The exact structure of HS macromolecules has not yet been determined because of their complexity and heterogeneity. Various descriptions of HS are used depending on specific environments of origin and research interests. In order to improve the understanding of the structure of HS extracted from landfill leachate (LHS) and commercial HS from leonardite (HHS), this study sought to compare the composition and characterization of the structure of LHS and HHS using elemental composition, chromatographic (high-performance liquid chromatography (HPLC)), and spectroscopic techniques (UV–vis, FTIR, NMR, and MALDI-TOF). The results showed that LHS molecules have a lower molecular weight and less aromatic structure than HHS molecules. The characteristics of functional groups of both LHS and HHS, however, were basically similar, but there was some differences in absorbance intensity. There were also less aliphatic and acidic functional groups and more aromatic and polyphenolic compounds in the humic acid (HA) fraction than in the fulvic acid (FA) and other molecules (OM) fractions of both origins. The differences between LHS and HHS might be due to the time course of humification. Combining the results obtained from these analytical techniques cold improve our understanding of the structure of HS of different origins and thus enhance their potential use. [less ▲]

Detailed reference viewed: 37 (20 ULg)
Full Text
Peer Reviewed
See detailEffect of temperature, pH and substrate composition on production of lipopeptides by Bacillus amyloliquefaciens 629
Pereira Monteiro, F.; Vasconcelos de Medeiros, F.H.; Ongena, Marc ULg et al

in African Journal of Microbiology Research (2016), 10(36), 1506-1512

Detailed reference viewed: 13 (0 ULg)
Full Text
Peer Reviewed
See detailCharacterization and Evaluation of the Potential of a Diesel-Degrading Bacterial Consortium Isolated from Fresh Mangrove Sediment
Lang, Firmin Semboung; Destain, Jacqueline ULg; Delvigne, Frank ULg et al

in Water, Air & Soil Pollution (2016), 227(2), 1-20

Detailed reference viewed: 18 (1 ULg)
Full Text
Peer Reviewed
See detailBiodegradation of Polycyclic Aromatic Hydrocarbons in Mangrove Sediments Under Different Strategies: Natural Attenuation, Biostimulation, and Bioaugmentation with Rhodococcus erythropolis T902.1
Lang, F. S.; Destain, Jacqueline ULg; Delvigne, Frank ULg et al

in Water, Air & Soil Pollution (2016), 227(9),

Polycyclic aromatic hydrocarbons (PAHs) are pollutants that occur in mangrove sediments. Their removal by bacteria often depends on specific characteristics as the number of benzene rings they possess and ... [more ▼]

Polycyclic aromatic hydrocarbons (PAHs) are pollutants that occur in mangrove sediments. Their removal by bacteria often depends on specific characteristics as the number of benzene rings they possess and their solubility. Their removal also depends on environmental factors, such as pH, temperature, oxygen, and the ability of the endogenous or exogenous microflora to metabolize hydrocarbons. With the aim of treating mangrove sediments polluted by hydrocarbons in a biological way, a biodegradation experiment was conducted using mangrove sediments artificially contaminated with a mixture of four PAHs. The study used Rhodococcus erythropolis as an exogenous bacterial strain in order to assess the biodegradation of the PAH mixture by natural attenuation, biostimulation, bioaugmentation, and a combination of biostimulation and bioaugmentation. The results showed that the last three treatments were more efficient than natural attenuation. The biostimulation/bioaugmentation combination proved to be the most effective PAH degradation treatment. © 2016, Springer International Publishing Switzerland. [less ▲]

Detailed reference viewed: 17 (1 ULg)