References of "Ongena, Marc"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailImpact of different plant secondary metabolites addition: saponin, tannic acid, salicin and aloin on glucose anaerobic co-digestion
Mambanzulua Ngoma, Philippe; Hiligsmann, Serge ULg; Sumbu Zola, Eric et al

in Journal of Fermentation Technology (in press)

Vegetal waste and some wastewater of agro-food industries contain plant secondary metabolites (PSMs). It was showed in nutritional researches that these substances such as saponins and tannins reduced the ... [more ▼]

Vegetal waste and some wastewater of agro-food industries contain plant secondary metabolites (PSMs). It was showed in nutritional researches that these substances such as saponins and tannins reduced the methane production in the rumen. To our knowledge no study was done in the waste treatment domain to evaluate the inhibitory effect of the principal glycosidic metabolites from the wastewater or vegetal waste on their own methane-producing anaerobic digestion. Therefore in this paper BMP tests were carried out at 30°C with four commercial PSMs (CPSMs) in mixture with glucose monohydrate (Gl) used as control sample. These CPSMs were saponin from Quilaja Saponaria Molina Pract (Sap), tannic acid (Tan), salicin (Sal) and aloin from Curacao Aloe (Alo) representing respectively saponins, tannins, alcoholic glycosides and anthraquinones sources. Acidogenesis and acetogenesis were recorded for all the mixtures of Gl and CPSMs; however their conversion rates decreased with the increase of the concentrations of CPSMs. By contrast, the methanogenesis was inhibited at concentrations of CPSMs above 0.3 g/l. The inhibition degree for aromatic compounds on the anaerobic biodegradation of Gl seemed directly to depend on the numbers of benzene rings in the medium and the synergism. Thus, the highest inhibition of the biogas production from Gl was recorded for Alo, followed by Sap, Tan and Sal. However, the highest inhibition of the methane production from Gl was recorded with Sap, Alo, Tan and Sal. It was supposed that the toxicity potentials of these PSMs on the own biomethanization would be in following decreasing order: Sap or Alo, Tan and Sal. Therefore, the concentration of PSMs alone or in mixture in a digester should be bellow 0.3 g/l. for a better methanization . [less ▲]

Detailed reference viewed: 30 (2 ULg)
Full Text
Peer Reviewed
See detailMolecular patterns of rhizobacteria involved in plant immunity elicitation.
Mariutto, Martin ULg; Ongena, Marc ULg

in Advances in Botanical Research (in press)

Detailed reference viewed: 55 (6 ULg)
Full Text
Peer Reviewed
See detailComprehensive comparison of the chemical and structural characterization of landfill leachate and leonardite humic fractions
Tahiri, Abdelghani ULg; Richel, Aurore ULg; Destain, Jacqueline ULg et al

in Analytical and Bioanalytical Chemistry (2016)

Humic substances (HS) are complex and heterogeneous mixtures of organic compounds that occur everywhere in the environment. They represent most of the dissolved organic matter in soils, sediments (fossil ... [more ▼]

Humic substances (HS) are complex and heterogeneous mixtures of organic compounds that occur everywhere in the environment. They represent most of the dissolved organic matter in soils, sediments (fossil), water, and landfills. The exact structure of HS macromolecules has not yet been determined because of their complexity and heterogeneity. Various descriptions of HS are used depending on specific environments of origin and research interests. In order to improve the understanding of the structure of HS extracted from landfill leachate (LHS) and commercial HS from leonardite (HHS), this study sought to compare the composition and characterization of the structure of LHS and HHS using elemental composition, chromatographic (high-performance liquid chromatography (HPLC)), and spectroscopic techniques (UV–vis, FTIR, NMR, and MALDI-TOF). The results showed that LHS molecules have a lower molecular weight and less aromatic structure than HHS molecules. The characteristics of functional groups of both LHS and HHS, however, were basically similar, but there was some differences in absorbance intensity. There were also less aliphatic and acidic functional groups and more aromatic and polyphenolic compounds in the humic acid (HA) fraction than in the fulvic acid (FA) and other molecules (OM) fractions of both origins. The differences between LHS and HHS might be due to the time course of humification. Combining the results obtained from these analytical techniques cold improve our understanding of the structure of HS of different origins and thus enhance their potential use. [less ▲]

Full Text
See detailEffects of Plant Growth-Promoting Rhizobacteria on Wheat Growth under Greenhouse and Field Conditions in combination with different nitrogen fertilizer levels
Nguyen, Minh ULg; Ongena, Marc ULg; Colinet, Gilles ULg et al

Poster (2015, November 23)

Many Plant Growth-Promoting Rhizobacteria (PGPR) are able to enhance root growth, mineral availability, and nutrient use efficiency of crops. The aim of this project is to screen commercially available ... [more ▼]

Many Plant Growth-Promoting Rhizobacteria (PGPR) are able to enhance root growth, mineral availability, and nutrient use efficiency of crops. The aim of this project is to screen commercially available PGPR formulations and lab strains to increase wheat growth and yield in combination with an optimized nitrogen (N) fertilizer application scheme. This could lead to a significant reduction of N fertilizer application without affecting the subsequent grain yields. The screened products collection includes (1) Mix1 (a mix of Azospirillum sp., Azorhizobium sp., and Azoarcus sp.), (2) Mix2 (a mix of Mix1 complemented with two strains of phosphorus-solubilizing Bacillus sp.), (3) Bacillus amyloliquefaciens a, (4) B. subtilis, and (5) B. amyloliquefaciens b. These products were screened under greenhouse and field conditions in 2014 by using spring and winter wheat varieties, respectively. Under greenhouse conditions, there was a significant increase in root dry weight and in root per shoot ratio of plants inoculated with Mix1. Under field conditions, the interaction between PGPR inoculation and different N fertilizer doses was assessed. The grain yield was negatively impacted by low N fertilizer applications. Under such conditions, the inoculation of the wheat rhizosphere with B. subtilis increased the grain yield by 15% relative to the water control. However, in the field trial, the variability between plot replicates was high and lead to non-significant results. Based on these results, modified screening strategies for PGPR selection were set up for the next trials. [less ▲]

Full Text
See detailImpacts of Plant Growth-Promoting Rhizobacteria-based Biostimulants on Wheat Growth under Greenhouse and Field Conditions
Nguyen, Minh ULg; Ongena, Marc ULg; Colinet, Gilles ULg et al

Poster (2015, November 16)

Plant Growth-Promoting Rhizobacteria (PGPR) are one of the main biostimulant classes due to their capacity of stimulating root growth and enhancing soil mineral availability, hence increasing nutrient use ... [more ▼]

Plant Growth-Promoting Rhizobacteria (PGPR) are one of the main biostimulant classes due to their capacity of stimulating root growth and enhancing soil mineral availability, hence increasing nutrient use efficiency in crops. The aim of this study is to screen commercially PGPR-containing products to enhance wheat growth and yield in combination with an optimized nitrogen (N) fertilizer application scheme. This could lead to a significant reduction of N fertilizer application without affecting the subsequent grain yields. The screened products collection includes (1) Mix1 (a mix of Azospirillum sp., Azorhizobium sp., and Azoarcus sp.), (2) Mix2 (a mix of Mix1 complemented with two strains of phosphorus-solubilizing Bacillus sp.), (3) Bacillus amyloliquefaciens a, (4) B. subtilis, and (5) B. amyloliquefaciens b. These biostimulants were screened under greenhouse and field conditions in 2014 by using spring and winter wheat varieties respectively. There was a significant increase in root dry weight and in root per shoot ratio of plants inoculated with Mix1. Under field conditions, the interaction between PGPR inoculation and N fertilizer application was assessed. The grain yield was negatively impacted by low N fertilizer applications. Under such conditions, the inoculation of the wheat rhizosphere with Bacillus subtilis increased the grain yield by 15% relative to the water control. However, in the field trial, the variability between plot replicates was high and lead to non-significant results. Based on those results, modified screening strategies for PGPR selection were set up for the 2015 trials to reduce field variability and possibly achieve higher yield increases. [less ▲]

Full Text
Peer Reviewed
See detailChange in ATP-binding cassette B1/19, glutamine synthetase and alcohol dehydrogenase gene expression during root elongation in Betula pendula Roth and Alnus glutinosa L. Gaertn in response to leachate and leonardite humic substances
Tahiri, Abdelghani ULg; Delporte, Fabienne ULg; Muhovski, Yordan et al

in Plant Physiology & Biochemistry (2015), 98

Humic substances (HS) are complex and heterogeneous compounds of humified organic matter resulting from the chemical and microbiological decomposition of organic residues. HS have a positive effect on ... [more ▼]

Humic substances (HS) are complex and heterogeneous compounds of humified organic matter resulting from the chemical and microbiological decomposition of organic residues. HS have a positive effect on plant growth and development by improving soil structure and fertility. They have long been recognized as plant growth-promoting substances, particularly with regard to influencing nutrient uptake, root growth and architecture. The biochemical and molecular mechanisms through which HS influence plant physiology are not well understood. This study evaluated the bioactivity of landfill leachate and leonardite HS on alder (Alnus glutinosa L. Gaertn) and birch (Betula pendula Roth) during root elongation in vitro. Changes in root development were studied in relation to auxin, carbon and nitrogen metabolisms, as well as to the stress adaptive response. The cDNA fragments of putative genes encoding two ATP-binding cassette (ABC) transporters (ABCB1 and ABCB19) belonging to the B subfamily of plant ABC auxin transporters were cloned and sequenced. Molecular data indicate that HS and their humic acid (HA) fractions induce root growth by influencing polar auxin transport (PAT), as illustrated by the modulation of the ABCB transporter transcript levels (ABCB1 and ABCB19). There were also changes in alcohol dehydrogenase (ADH) and glutamine synthetase (GS) gene transcript levels in response to HS exposure. These findings confirmed that humic matter affects plant growth and development through various metabolic pathways, including hormonal, carbon and nitrogen metabolisms and stress response or signalization. [less ▲]

Detailed reference viewed: 22 (5 ULg)
Full Text
See detailElicitor screening to protect wheat against Zymoseptoria tritici
Le Mire, Géraldine ULg; SIAH, ALI; Deleu, Magali ULg et al

Conference (2015, August 27)

Plants face an array of biotic and abiotic stresses in their environment, making it necessary to use various chemical inputs to maintain satisfactory yield. Today, conventional agriculture is evolving ... [more ▼]

Plants face an array of biotic and abiotic stresses in their environment, making it necessary to use various chemical inputs to maintain satisfactory yield. Today, conventional agriculture is evolving towards more sustainable practices, out of respect for human health and the environment. Elicitors are considered as promising biological control tools and draw major interest in IPM strategies. These plant-immunity triggering compounds, also called “stimulators of plant natural defenses”, induce a general and systemic resistance in the plant to various diseases. Although numerous elicitors have already been identified and some of them reached the market since the late 1970s, further investigations are still required to better understand the mode of action of these molecules in the plant and ensure a consistent efficiency under various field conditions. Few elicitors have yet been successfully tested and formulated to protect monocotyledonous crop plants such as wheat, which is cultivated over large areas in Europe. This study focuses on the screening of ten potential elicitor products of various origins and structures to protect winter wheat against the fungal pathogen Zymoseptoria tritici. Greenhouse trials were carried out to measure the ability of the different products to reduce disease foliar symptoms (necrosis, chlorosis and pycnidia). Topical spraying treatments with 3 different concentrations of each product were carried out 5 days before pathogen inoculation. Disease severity (% of symptoms on the total surface of the third leaf) was then scored every 2 days up to 28 days post-inoculation. In addition, phytotoxicity and biocide activity of these products was evaluated under greenhouse and laboratory conditions, respectively. The corresponding results will be presented and discussed with the perspective to choose the best elicitor candidates and to undertake investigations on the signaling pathway and the influence of environmental parameters on the elicitation capacity. [less ▲]

Detailed reference viewed: 38 (5 ULg)
Full Text
See detailImpacts of Plant Growth-Promoting Rhizobacteria on Wheat Growth under Greenhouse and Field Conditions
Nguyen, Minh ULg; du Jardin, Patrick ULg; Jijakli, Haissam ULg et al

Poster (2015, June 16)

Plant Growth-Promoting Rhizobacteria (PGPR) are well-known on stimulating root growth, enhancing mineral availability, and nutrient use efficiency in crops, and therefore become promising tool for ... [more ▼]

Plant Growth-Promoting Rhizobacteria (PGPR) are well-known on stimulating root growth, enhancing mineral availability, and nutrient use efficiency in crops, and therefore become promising tool for sustainable agriculture. The aim of this project is to screen PGPR strains to enhance wheat growth and yield in combination with an optimised nitrogen (N) fertilizer dose, and thus finally reduce the use of N fertilizer with equivalent yield as the recommended N dose. A list of PGPR has been collected, including (1) Mix1 (a mix of Azospirillum sp., Azorhizobium sp., and Azoarcus sp.), (2) Mix2 (a mix of Mix1 plus with two strains phosphorus-solubilizing Bacillus sp.), (3) Bacillus amyloliquefaciens a, (4) Bacillus subtilis, and (5) Bacillus amyloliquefaciens b. The PGPR were screened in both greenhouse and field condition 2014. There was significant increase in root dry weight and in root per shoot ratio of plants inoculated with Mix1 in the greenhouse. Under field condition, besides the first factor PGPR, an additional factor, i.e. four N fertilizer doses, was applied in the combination with PGPR. Without or at low N fertilizer doses, the results showed that the grain yield declined significantly. The highest grain yield increase was fifteen per cent above the control and achieved by inoculating Bacillus subtilis without application of N fertilizer. However, there was statistically insignificant in all treatments due to variability between plot replicates. Based on these results, a modified protocol plus new strategies for PGPR selection has been built up for 2015 trial to reduce the influence of variability on field and possibly achieve the higher yield increase. [less ▲]

Full Text
See detailScreening for interesting elicitors to protect wheat against Zymoseptoria tritici
Le Mire, Géraldine ULg; Siah, Ali; Fauconnier, Marie-Laure ULg et al

Conference (2015, May 19)

Plants face an array of biotic and abiotic stresses in their environment, making it necessary to use various chemical inputs to maintain satisfactory yield. Today, conventional agriculture is evolving ... [more ▼]

Plants face an array of biotic and abiotic stresses in their environment, making it necessary to use various chemical inputs to maintain satisfactory yield. Today, conventional agriculture is evolving towards more sustainable practices, out of respect for human health and the environment. Elicitors are considered as promising biological control tools and draw major interest in IPM strategies. These plant-immunity triggering compounds, also called “stimulators of plant natural defenses”, induce a general and systemic resistance in the plant to various diseases. Although numerous elicitors have already been identified and some of them reached the market since the late 1970s, further investigations are still required to better understand the mode of action of these molecules in the plant and ensure a consistent efficiency under various field conditions. Few elicitors have yet been successfully tested and formulated to protect crop plants such as wheat, which is cultivated over large areas in Europe. This study focuses on the screening of ten potential elicitor products of various origins and structures to protect winter wheat against the fungal pathogen Zymoseptoria tritici. Greenhouse trials were carried out to measure the ability of the different products to reduce disease foliar symptoms (necrosis, chlorosis and pycnidia). In addition, the phytotoxicity and biocide activities of these products were evaluated under greenhouse and laboratory conditions, respectively. The corresponding results will be presented and discussed with the perspective to choose the best elicitor candidates and to undertake investigations on the signaling pathway and the influence of environmental parameters on the elicitation capacity. [less ▲]

Detailed reference viewed: 71 (24 ULg)
Peer Reviewed
See detailSurfactin: a receptor-independent bacterial elicitor of plant immunity?
Luzuriaga Loaiza, Walter ULg; Legras, Aurelien; Crowet, Jean-Marc ULg et al

Poster (2015, May 13)

Detailed reference viewed: 39 (3 ULg)
Full Text
Peer Reviewed
See detailGrowth of desferrioxamine deficient Streptomyces mutants through xenosiderophore piracy of airborne fungal contaminations
Arguelles Arias, Anthony ULg; Lambert, Stephany; Martinet, Loïc et al

in FEMS Microbiology Ecology (2015)

Detailed reference viewed: 36 (8 ULg)