References of "Nussbaum, E"
     in
Bookmark and Share    
Full Text
See detailStatus of the ARGOS project
Rabien, S.; Barl, L.; Beckmann, U. et al

in Adaptive Optics Systems IV (2014)

ARGOS is the Laser Guide Star and Wavefront sensing facility for the Large Binocular Telescope. With first laser light on sky in 2013, the system is currently undergoing commissioning at the telescope. We ... [more ▼]

ARGOS is the Laser Guide Star and Wavefront sensing facility for the Large Binocular Telescope. With first laser light on sky in 2013, the system is currently undergoing commissioning at the telescope. We present the overall status and design, as well as first results on sky. Aiming for a wide field ground layer correction, ARGOS is designed as a multi- Rayleigh beacon adaptive optics system. A total of six powerful pulsed lasers are creating the laser guide stars in constellations above each of the LBTs primary mirrors. With a range gated detection in the wavefront sensors, and the adaptive correction by the deformable secondary's, we expect ARGOS to enhance the image quality over a large range of seeing conditions. With the two wide field imaging and spectroscopic instruments LUCI1 and LUCI2 as receivers, a wide range of scientific programs will benefit from ARGOS. With an increased resolution, higher encircled energy, both imaging and MOS spectroscopy will be boosted in signal to noise by a large amount. Apart from the wide field correction ARGOS delivers in its ground layer mode, we already foresee the implementation of a hybrid Sodium with Rayleigh beacon combination for a diffraction limited AO performance. [less ▲]

Detailed reference viewed: 16 (0 ULiège)
Full Text
See detailStatus of ARGOS - The Laser Guide Star System for the LBT
Raab, W.; Rabien, S.; Gaessler, W. et al

in Proceedings of the Third AO4ELT Conference (2013)

ARGOS is an innovative multiple laser guide star adaptive optics system for the Large Binocular Telescope (LBT), designed to perform effective GLAO correction over a very wide field of view. The system is ... [more ▼]

ARGOS is an innovative multiple laser guide star adaptive optics system for the Large Binocular Telescope (LBT), designed to perform effective GLAO correction over a very wide field of view. The system is using high powered pulsed green (532 nm) lasers to generate a set of three guide stars above each of the LBT mirrors. The laser beams are launched through a 40 cm telescope and focused at an altitude of 12 km, creating laser beacons by means of Rayleigh scattering. The returning scattered light, primarily sensitive to the turbulences close to the ground, is detected by a gated wavefront sensor system. The derived ground layer correction signals are directly driving the adaptive secondary mirror of the LBT. ARGOS is especially designed for operation with the multiple object spectrograph Luci, which will benefit from both, the improved spatial resolution, as well as the strongly enhanced flux. In addition to the GLAO Rayleigh beacon system, ARGOS was also designed for a possible future upgrade with a hybrid sodium laser - Rayleigh beacon combination, enabling diffraction limited operation. The ARGOS laser system has undergone extensive tests during Summer 2012 and is scheduled for installation at the LBT in Spring 2013. The remaining sub-systems will be installed during the course of 2013. We report on the overall status of the ARGOS system and the results of the sub-system characterizations carried out so far. [less ▲]

Detailed reference viewed: 17 (1 ULiège)
Full Text
See detailStatus of the ARGOS ground layer adaptive optics system
Gässler, W.; Rabien, S.; Esposito, S. et al

in Adaptive Optics Systems III (2012)

ARGOS the Advanced Rayleigh guided Ground layer adaptive Optics System for the LBT (Large Binocular Telescope) is built by a German-Italian-American consortium. It will be a seeing reducer correcting the ... [more ▼]

ARGOS the Advanced Rayleigh guided Ground layer adaptive Optics System for the LBT (Large Binocular Telescope) is built by a German-Italian-American consortium. It will be a seeing reducer correcting the turbulence in the lower atmosphere over a field of 2' radius. In such way we expect to improve the spatial resolution over the seeing of about a factor of two and more and to increase the throughput for spectroscopy accordingly. In its initial implementation, ARGOS will feed the two near-infrared spectrograph and imager - LUCI I and LUCI II. The system consist of six Rayleigh lasers - three per eye of the LBT. The lasers are launched from the back of the adaptive secondary mirror of the LBT. ARGOS has one wavefront sensor unit per primary mirror of the LBT, each of the units with three Shack-Hartmann sensors, which are imaged on one detector. In 2010 and 2011, we already mounted parts of the instrument at the telescope to provide an environment for the main sub-systems. The commissioning of the instrument will start in 2012 in a staged approach. We will give an overview of ARGOS and its goals and report about the status and new challenges we encountered during the building phase. Finally we will give an outlook of the upcoming work, how we will operate it and further possibilities the system enables by design. [less ▲]

Detailed reference viewed: 15 (1 ULiège)
Full Text
See detailMatisse
Lopez, B.; Lagarde, S.; Wolf, S. et al

in Moorwood, 1 (Ed.) Science with the VLT in the ELT Era (2009)

MATISSE is foreseen as a mid-infrared spectro-interferometer combining the beams of up to four UTs/ATs of the Very Large Telescope Interferometer (VLTI). MATISSE will measure closure phase relations and ... [more ▼]

MATISSE is foreseen as a mid-infrared spectro-interferometer combining the beams of up to four UTs/ATs of the Very Large Telescope Interferometer (VLTI). MATISSE will measure closure phase relations and thus offer an efficient capability for image reconstruction in the L, M and N bands of the mid-infrared domain. [less ▲]

Detailed reference viewed: 16 (1 ULiège)