References of "Nuspl, J"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailKepler observations of the variability in B-type stars
Balona, L. A.; Pigulski, A.; Cat, P De et al

in Monthly Notices of the Royal Astronomical Society (2011), 413

The analysis of the light curves of 48 B-type stars observed by Kepler is presented. Among these are 15 pulsating stars, all of which show low frequencies, characteristic of slowly pulsating B (SPB) stars ... [more ▼]

The analysis of the light curves of 48 B-type stars observed by Kepler is presented. Among these are 15 pulsating stars, all of which show low frequencies, characteristic of slowly pulsating B (SPB) stars. Seven of these stars also show a few weak, isolated high frequencies and they could be considered as SPB/β Cephei (β Cep) hybrids. In all cases, the frequency spectra are quite different from what is seen from ground-based observations. We suggest that this is because most of the low frequencies are modes of high degree which are predicted to be unstable in models of mid-B stars. We find that there are non-pulsating stars within the β Cep and SPB instability strips. Apart from the pulsating stars, we can identify stars with frequency groupings similar to what is seen in Be stars but which are not Be stars. The origin of the groupings is not clear, but may be related to rotation. We find periodic variations in other stars which we attribute to proximity effects in binary systems or possibly rotational modulation. We find no evidence for pulsating stars between the cool edge of the SPB and the hot edge of the δ Sct instability strips. None of the stars shows the broad features which can be attributed to stochastically excited modes as recently proposed. Among our sample of B stars are two chemically peculiar stars, one of which is a HgMn star showing rotational modulation in the light curve. [less ▲]

Detailed reference viewed: 22 (10 ULg)
Full Text
Peer Reviewed
See detailHybrid gamma Doradus-delta Scuti Pulsators: New Insights into the Physics of the Oscillations from Kepler Observations
Grigahcène, Ahmed; Antoci, V.; Balona, L. et al

in Astrophysical Journal (2010), 713

Observations of the pulsations of stars can be used to infer their interior structure and test theoretical models. The main-sequence γ Doradus (Dor) and δ Scuti (Sct) stars with masses 1.2-2.5 M [SUB ... [more ▼]

Observations of the pulsations of stars can be used to infer their interior structure and test theoretical models. The main-sequence γ Doradus (Dor) and δ Scuti (Sct) stars with masses 1.2-2.5 M [SUB]sun[/SUB] are particularly useful for these studies. The γ Dor stars pulsate in high-order g-modes with periods of order 1 day, driven by convective blocking at the base of their envelope convection zone. The δ Sct stars pulsate in low-order g- and p-modes with periods of order 2 hr, driven by the κ mechanism operating in the He II ionization zone. Theory predicts an overlap region in the Hertzsprung-Russell diagram between instability regions, where "hybrid" stars pulsating in both types of modes should exist. The two types of modes with properties governed by different portions of the stellar interior provide complementary model constraints. Among the known γ Dor and δ Sct stars, only four have been confirmed as hybrids. Now, analysis of combined Quarter 0 and Quarter 1 Kepler data for hundreds of variable stars shows that the frequency spectra are so rich that there are practically no pure δ Sct or γ Dor pulsators, i.e., essentially all of the stars show frequencies in both the δ Sct and the γ Dor frequency range. A new observational classification scheme is proposed that takes into account the amplitude as well as the frequency and is applied to categorize 234 stars as δ Sct, γ Dor, δ Sct/γ Dor or γ Dor/δ Sct hybrids. [less ▲]

Detailed reference viewed: 21 (2 ULg)
Full Text
Peer Reviewed
See detailKepler observations: Light shed on the hybrid γ Doradus - δ Scuti pulsation phenomenon
Grigahcène, A.; Uytterhoeven, K.; Antoci, V. et al

in Astronomische Nachrichten (2010), 331

Through the observational study of stellar pulsations, the internal structure of stars can be probed and theoretical models can be tested. The main sequence γ Doradus (Dor) and δ Scuti (Sct) stars with ... [more ▼]

Through the observational study of stellar pulsations, the internal structure of stars can be probed and theoretical models can be tested. The main sequence γ Doradus (Dor) and δ Scuti (Sct) stars with masses 1.2-2.5 M[SUB]ȯ[/SUB] are particularly interesting for asteroseismic study. The γ Dor stars pulsate in high-order gravity (g) modes, with pulsational periods of order of one day. The δ Sct stars, on the other hand, show low-order g and pressure (p) modes with periods of order of 2 hours. Theory predicts the existence of `hybrid' stars, i.e. stars pulsating in both types of modes, in an overlap region between the instability strips of γ Dor and δ Sct stars in the Hertzsprung-Russell diagram. Hybrid stars are particularly interesting as the two types of modes probe different regions of the stellar interior and hence provide complementary model constraints. Before the advent of Kepler, only a few hybrid stars had been confirmed. The {{Kepler}} satellite is providing a true revolution in the study of and search for hybrid stars. Analysis of the first 50 days of {{Kepler}} data of hundreds of γ Dor and δ Sct candidates reveals extremely rich frequency spectra, with most stars showing frequencies in both the δ Sct and γ Dor frequency range. As these results show that there are practically no pure δ Sct or γ Dor pulsators, a new observational classification scheme is proposed by \cite{Grig10}. We present their results and characterize 234 stars in terms of δ Sct, γ Dor, δ Sct/γ Dor or γ Dor/δ Sct hybrids. [less ▲]

Detailed reference viewed: 16 (2 ULg)