References of "Nolens, Gregory"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailKu proteins interact with activator protein-2 transcription factors and contribute to ERBB2 overexpression in breast cancer cell lines.
Nolens, Grégory ULg; Pignon, Jean-Christophe ULg; Koopmansch, Benjamin ULg et al

in Breast Cancer Research [=BCR] (2009), 11(6),

INTRODUCTION: Activator protein-2 (AP-2) alpha and AP-2 gamma transcription factors contribute to ERBB2 gene overexpression in breast cancer. In order to understand the mechanism by which the ERBB2 gene ... [more ▼]

INTRODUCTION: Activator protein-2 (AP-2) alpha and AP-2 gamma transcription factors contribute to ERBB2 gene overexpression in breast cancer. In order to understand the mechanism by which the ERBB2 gene is overexpressed we searched for novel AP-2 interacting factors that contribute to its activity. METHODS: Ku proteins were identified as AP-2 alpha interacting proteins by glutathione serine transferase (GST)-pull down followed by mass spectrometry. Transfection of the cells with siRNA, expression vectors and reporter vectors as well as chromatin immunoprecipitation (ChIP) assay were used to ascertain the implication of Ku proteins on ERBB2 expression. RESULTS: Nuclear proteins from BT-474 cells overexpressing AP-2 alpha and AP-2 gamma were incubated with GST-AP2 or GST coated beads. Among the proteins retained specifically on GST-AP2 coated beads Ku70 and Ku80 proteins were identified by mass spectrometry. The contribution of Ku proteins to ERBB2 gene expression in BT-474 and SKBR3 cell lines was investigated by downregulating Ku proteins through the use of specific siRNAs. Depletion of Ku proteins led to downregulation of ERBB2 mRNA and protein levels. Furthermore, reduction of Ku80 in HCT116 cell line decreased the AP-2 alpha activity on a reporter vector containing an AP-2 binding site linked to the ERBB2 core promoter, and transfection of Ku80 increased the activity of AP-2 alpha on this promoter. Ku siRNAs also inhibited the activity of this reporter vector in BT-474 and SKBR3 cell lines and the activity of the ERBB2 promoter was further reduced by combining Ku siRNAs with AP-2 alpha and AP-2 gamma siRNAs. ChIP experiments with chromatin extracted from wild type or AP-2 alpha and AP-2 gamma or Ku70 siRNA transfected BT-474 cells demonstrated Ku70 recruitment to the ERBB2 proximal promoter in association with AP-2 alpha and AP-2 gamma. Moreover, Ku70 siRNA like AP-2 siRNAs, greatly reduced PolII recruitment to the ERBB2 proximal promoter. CONCLUSIONS: Ku proteins in interaction with AP-2 (alpha and gamma) contribute to increased ERBB2 mRNA and protein levels in breast cancer cells. [less ▲]

Detailed reference viewed: 52 (16 ULg)
Full Text
Peer Reviewed
See detailAndrogen receptor controls EGFR and ERBB2 gene expression at different levels in prostate cancer cell lines.
Pignon, Jean-Christophe ULg; Koopmansch, Benjamin ULg; Nolens, Grégory ULg et al

in Cancer Research (2009), 69(7), 2941-2949

EGFR or ERBB2 contributes to prostate cancer (PCa) progression by activating the androgen receptor (AR) in hormone-poor conditions. Here, we investigated the mechanisms by which androgens regulate EGFR ... [more ▼]

EGFR or ERBB2 contributes to prostate cancer (PCa) progression by activating the androgen receptor (AR) in hormone-poor conditions. Here, we investigated the mechanisms by which androgens regulate EGFR and ERBB2 expression in PCa cells. In steroid-depleted medium (SDM), EGFR protein was less abundant in androgen-sensitive LNCaP than in androgen ablation-resistant 22Rv1 cells, whereas transcript levels were similar. Dihydrotestosterone (DHT) treatment increased both EGFR mRNA and protein levels and stimulated RNA polymerase II recruitment to the EGFR gene promoter, whereas it decreased ERBB2 transcript and protein levels in LNCaP cells. DHT altered neither EGFR or ERBB2 levels nor the abundance of prostate-specific antigen (PSA), TMEPA1, or TMPRSS2 mRNAs in 22Rv1 cells, which express the full-length and a shorter AR isoform deleted from the COOH-terminal domain (ARDeltaCTD). The contribution of both AR isoforms to the expression of these genes was assessed by small interfering RNAs targeting only the full-length or both AR isoforms. Silencing of both isoforms strongly reduced PSA, TMEPA1, and TMPRSS2 transcript levels. Inhibition of both AR isoforms did not affect EGFR and ERBB2 transcript levels but decreased EGFR and increased ERBB2 protein levels. Proliferation of 22Rv1 cells in SDM was inhibited in the absence of AR and ARDeltaCTD. A further decrease was obtained with PKI166, an EGFR/ERBB2 kinase inhibitor. Overall, we showed that ARDeltaCTD is responsible for constitutive EGFR expression and ERBB2 repression in 22Rv1 cells and that ARDeltaCTD and tyrosine kinase receptors are necessary for sustained 22Rv1 cell growth. [less ▲]

Detailed reference viewed: 54 (22 ULg)
Full Text
Peer Reviewed
See detailThe combined immunodetection of AP-2alpha and YY1 transcription factors is associated with ERBB2 gene overexpression in primary breast tumors.
Allouche, Abdelkader; Nolens, Gregory ULg; Tancredi, Annalisa ULg et al

in Breast Cancer Research [=BCR] (2008), 10(1), 9

INTRODUCTION: Overexpression of the ERBB2 oncogene is observed in about 20% of human breast tumors and is the consequence of increased transcription rates frequently associated with gene amplification ... [more ▼]

INTRODUCTION: Overexpression of the ERBB2 oncogene is observed in about 20% of human breast tumors and is the consequence of increased transcription rates frequently associated with gene amplification. Several studies have shown a link between activator protein 2 (AP-2) transcription factors and ERBB2 gene expression in breast cancer cell lines. Moreover, the Yin Yang 1 (YY1) transcription factor has been shown to stimulate AP-2 transcriptional activity on the ERBB2 promoter in vitro. In this report, we examined the relationships between ERBB2, AP-2alpha, and YY1 both in breast cancer tissue specimens and in a mammary cancer cell line. METHODS: ERBB2, AP-2alpha, and YY1 protein levels were analyzed by immunohistochemistry in a panel of 55 primary breast tumors. ERBB2 gene amplification status was determined by fluorescent in situ hybridization. Correlations were evaluated by a chi2 test at a p value of less than 0.05. The functional role of AP-2alpha and YY1 on ERBB2 gene expression was analyzed by small interfering RNA (siRNA) transfection in the BT-474 mammary cancer cell line followed by real-time reverse transcription-polymerase chain reaction and Western blotting. RESULTS: We observed a statistically significant correlation between ERBB2 and AP-2alpha levels in the tumors (p < 0.01). Moreover, associations were found between ERBB2 protein level and the combined high expression of AP-2alpha and YY1 (p < 0.02) as well as between the expression of AP-2alpha and YY1 (p < 0.001). Furthermore, the levels of both AP-2alpha and YY1 proteins were inversely correlated to ERBB2 gene amplification status in the tumors (p < 0.01). Transfection of siRNAs targeting AP-2alpha and AP-2gamma mRNAs in the BT-474 breast cancer cell line repressed the expression of the endogenous ERBB2 gene at both the mRNA and protein levels. Moreover, the additional transfection of an siRNA directed against the YY1 transcript further reduced the ERBB2 protein level, suggesting that AP-2 and YY1 transcription factors cooperate to stimulate the transcription of the ERBB2 gene. CONCLUSION: This study highlights the role of both AP-2alpha and YY1 transcription factors in ERBB2 oncogene overexpression in breast tumors. Our results also suggest that high ERBB2 expression may result either from gene amplification or from increased transcription factor levels. [less ▲]

Detailed reference viewed: 132 (17 ULg)
Full Text
Peer Reviewed
See detailHedgehog signaling pathway is inactive in colorectal cancer cell lines
Chatel, Guillaume; Ganeff, Corinne ULg; Boussif, Naima et al

in International Journal of Cancer = Journal International du Cancer (2007), 121(12), 2622-2627

The Hedgehog (Hh) signaling pathway plays an important role in human development. Abnormal activation of this pathway has been observed in several types of human cancers, such as the upper gastro ... [more ▼]

The Hedgehog (Hh) signaling pathway plays an important role in human development. Abnormal activation of this pathway has been observed in several types of human cancers, such as the upper gastro-intestinal tract cancers. However, activation of the Hh pathway in colorectal cancers is controversial. We analyzed the expression of the main key members of the Hh pathway in 7 colon cancer cell lines in order to discover whether the pathway is constitutively active in these cells. We estimated the expression of SHH, IHH, PTCH, SMO, GLI1, GLI2, GLI3, SUFU and HHIP genes by RT-PCR. Moreover, Hh ligand, Gli3 and Sufu protein levels were quantified by western blotting. None of the cell lines expressed the complete set of Hh pathway members. The ligands were absent from Colo320 and HCT116 cells, Smo from Colo205, HT29 and WiDr. GLI1 gene was not expressed in SW480 cells nor were GLI2/GLI3 in Colo205 or Caco-2 cells. Furthermore the repressive form of Gli3, characteristic of an inactive pathway, was detected in SW480 and Colo320 cells. Finally treatment of colon cancer cells with cyclopamine, a specific inhibitor of the Hh pathway, did not downregulate PTCH and GLI1 genes expression in the colorectal cells, whereas it did so in PANC1 control cells. Taken together, these results indicate that the aberrant activation of the Hh signaling pathway is not common in colorectal cancer cell lines. (c) 2007 Wiley-Liss, Inc. [less ▲]

Detailed reference viewed: 80 (12 ULg)