References of "Neves, V"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailA global analysis of Spitzer and new HARPS data confirms the loneliness and metal-richness of GJ 436 b
Lanotte, Audrey ULg; Gillon, Michaël ULg; Demory, B.-O. et al

in Astronomy and Astrophysics (in press)

Context. GJ 436b is one of the few transiting warm Neptunes for which a detailed characterisation of the atmosphere is possible, whereas its non-negligible orbital eccentricity calls for further ... [more ▼]

Context. GJ 436b is one of the few transiting warm Neptunes for which a detailed characterisation of the atmosphere is possible, whereas its non-negligible orbital eccentricity calls for further investigation. Independent analyses of several individual datasets obtained with Spitzer have led to contradicting results attributed to the different techniques used to treat the instrumental effects. Aims. We aim at investigating these previous controversial results and developing our knowledge of the system based on the full Spitzer photometry dataset combined with new Doppler measurements obtained with the HARPS spectrograph. We also want to search for additional planets. Methods. We optimise aperture photometry techniques and the photometric deconvolution algorithm DECPHOT to improve the data reduction of the Spitzer photometry spanning wavelengths from 3-24 {\mu}m. Adding the high precision HARPS radial velocity data, we undertake a Bayesian global analysis of the system considering both instrumental and stellar effects on the flux variation. Results. We present a refined radius estimate of RP=4.10 +/- 0.16 R_Earth, mass MP=25.4 +/- 2.1 M_Earth and eccentricity e= 0.162 +/- 0.004 for GJ 436b. Our measured transit depths remain constant in time and wavelength, in disagreement with the results of previous studies. In addition, we find that the post-occultation flare-like structure at 3.6 {\mu}m that led to divergent results on the occultation depth measurement is spurious. We obtain occultation depths at 3.6, 5.8, and 8.0 {\mu}m that are shallower than in previous works, in particular at 3.6 {\mu}m. However, these depths still appear consistent with a metal-rich atmosphere depleted in methane and enhanced in CO/CO2, although perhaps less than previously thought. We find no evidence for a potential planetary companion, stellar activity, nor for a stellar spin-orbit misalignment. [ABRIDGED] [less ▲]

Detailed reference viewed: 8 (0 ULg)
Full Text
See detailThe HARPS search for southern extra-solar planets. XXXIV. A planetary system around the nearby M dwarf GJ163, with a super-Earth possibly in the habitable zone
Bonfils, X.; Lo Curto, G.; Correia, A. C. M. et al

E-print/Working paper (2013)

The meter-per-second precision achieved by today velocimeters enables the search for 1-10 M_Earth planets in the habitable zone of cool stars. This paper reports on the detection of 3 planets orbiting ... [more ▼]

The meter-per-second precision achieved by today velocimeters enables the search for 1-10 M_Earth planets in the habitable zone of cool stars. This paper reports on the detection of 3 planets orbiting GJ163 (HIP19394), a M3 dwarf monitored by our ESO/HARPS search for planets. We made use of the HARPS spectrograph to collect 150 radial velocities of GJ163 over a period of 8 years. We searched the RV time series for coherent signals and found 5 distinct periodic variabilities. We investigated the stellar activity and casted doubts on the planetary interpretation for 2 signals. Before more data can be acquired we concluded that at least 3 planets are orbiting GJ163. They have orbital periods of P_b=8.632+-0.002, P_c=25.63+-0.03 and P_d=604+-8 days and minimum masses msini = 10.6+-0.6, 6.8+-0.9, and 29+-3 M_Earth, respectively. We hold our interpretations for the 2 additional signals with periods P_(e)=19.4 and P_(f)=108 days. The inner pair presents an orbital period ratio of 2.97, but a dynamical analysis of the system shows that it lays outside the 3:1 mean motion resonance. GJ163c, in particular, is a super-Earth with an equilibrium temperature of T_eq = (302+-10) (1-A)^(1/4) K and may lie in the so called habitable zone for albedo values (A=0.34-0.89) moderately higher than that of Earth (A_Earth=0.2-0.3). [less ▲]

Detailed reference viewed: 8 (0 ULg)
Full Text
Peer Reviewed
See detailA hot Uranus transiting the nearby M dwarf GJ 3470. Detected with HARPS velocimetry. Captured in transit with TRAPPIST photometry
Bonfils, X.; Gillon, Michaël ULg; Udry, S. et al

in Astronomy and Astrophysics (2012), 546

We report on the discovery of GJ 3470 b, a transiting hot Uranus of mass m[SUB]p[/SUB] = 14.0 ± 1.8 M[SUB]⊕[/SUB], radius R[SUB]p[/SUB] = 4.2 ± 0.6 R[SUB]⊕[/SUB] and period P = 3.3371 ± 0.0002 day. Its ... [more ▼]

We report on the discovery of GJ 3470 b, a transiting hot Uranus of mass m[SUB]p[/SUB] = 14.0 ± 1.8 M[SUB]⊕[/SUB], radius R[SUB]p[/SUB] = 4.2 ± 0.6 R[SUB]⊕[/SUB] and period P = 3.3371 ± 0.0002 day. Its host star is a nearby (d = 25.2 ± 2.9 pc) M1.5 dwarf of mass M[SUB]⋆[/SUB] = 0.54 ± 0.07 M[SUB]&sun;[/SUB] and radius R[SUB]⋆[/SUB] = 0.50 ± 0.06 R[SUB]&sun;[/SUB]. The detection was made during a radial-velocity campaign with Harps that focused on the search for short-period planets orbiting M dwarfs. Once the planet was discovered and the transit-search window narrowed to about 10% of an orbital period, a photometric search started with Trappist and quickly detected the ingress of the planet. Additional observations with Trappist, EulerCam and Nites definitely confirmed the transiting nature of GJ 3470b and allowed the determination of its true mass and radius. The star's visible or infrared brightness (V[SUP]mag[/SUP] = 12.3, K[SUP]mag[/SUP] = 8.0), together with a large eclipse depth D = 0.57 ± 0.05%, ranks GJ 3470 b among the most suitable planets for follow-up characterizations. Based on observations made with the HARPS instrument on the ESO 3.6 m telescope under the program IDs 183.C-0437 at Cerro La Silla (Chile).Our radial-velocity and photometric time series are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via <A href="http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/546/A27">http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/546/A27</A> [less ▲]

Detailed reference viewed: 16 (0 ULg)
Full Text
Peer Reviewed
See detailThe HARPS search for southern extra-solar planets XXXV. Super-Earths around the M-dwarf neighbors Gl433 and Gl667C
Delfosse, X.; Bonfils, X.; Forveille, T. et al

in Astronomy and Astrophysics (2012), 553

Context. M dwarfs have often been found to have super-Earth planets with short orbital periods. These stars are thus preferential targets in searches for rocky or ocean planets in the solar neighborhood ... [more ▼]

Context. M dwarfs have often been found to have super-Earth planets with short orbital periods. These stars are thus preferential targets in searches for rocky or ocean planets in the solar neighborhood. Aims: Our research group recently announced the discovery of one and two low-mass planets around the M1.5V stars Gl 433 and Gl 667C, respectively. We found these planets with the HARPS spectrograph on the ESO 3.6-m telescope at La Silla Observatory, from observations obtained during the guaranteed time observing program of that instrument. Methods: We obtained additional HARPS observations of those two stars, for a total of 67 and 179 radial velocity measurements for Gl 433 and Gl 667C, respectively, and present here an orbital analysis of these extended data sets and our main conclusions about both planetary systems. Results: One of the three planets, Gl 667Cc, has a mass of only M2sini ~ 4.25 M⊕ and orbits in the central habitable zone of its host star. It receives only 10% less stellar energy from Gl 667C than the Earth receives from the Sun. However, planet evolution in the habitable zone can be very different if the host star is a M dwarf or a solar-like star, without necessarily questioning the presence of water. The two other planets, Gl 433b and Gl 667Cb, both have M2sini of ~5.5 M⊕ and periods of ~7 days. The radial velocity measurements of both stars contain longer timescale signals, which we fit with longer period Keplerians. For Gl 433, the signal probably originates in a magnetic cycle, while data of longer time span will be needed before conclusive results can be obtained for Gl 667C. The metallicity of Gl 433 is close to solar, while Gl 667C is metal poor with [Fe/H] ~ -0.6. This reinforces the recent conclusion that the occurrence of super-Earth planets does not strongly correlate with the stellar metallicity. [less ▲]

Detailed reference viewed: 22 (1 ULg)
Full Text
See detailThe HARPS search for southern extra-solar planets XXXII. Only 4 planets in the Gl~581 system
Forveille, T.; Bonfils, X.; Delfosse, X. et al

E-print/Working paper (2011)

The Gl 581 planetary system has generated wide interest, because its 4 planets include both the lowest mass planet known around a main sequence star other than the Sun and the first super-Earth planet in ... [more ▼]

The Gl 581 planetary system has generated wide interest, because its 4 planets include both the lowest mass planet known around a main sequence star other than the Sun and the first super-Earth planet in the habitable zone of its star. A recent paper announced the possible discovery of two additional super-Earth planets in that system, one of which would be in the middle of the habitable zone of Gl 581. The statistical significance of those two discoveries has, however, been questioned. We have obtained 121 new radial velocity measurements of Gl 581 with the HARPS spectrograph on the ESO 3.6 m telescope, and analyse those together with our previous 119 measurements of that star to examine these potential additional planets. We find that neither is likely to exist with their proposed parameters. We also obtained photometric observations with the 2.5 m Isaac Newton Telescope during a potential transit of the inner planet, Gl 581e, which had a 5% geometric transit probability. Those observations exclude transits for planet densities under 4 times the Earth density within -0.2 sigma to +2.7 sigma of the predicted transit center. [less ▲]

Detailed reference viewed: 30 (1 ULg)
Full Text
Peer Reviewed
See detailA short-period super-Earth orbiting the M2.5 dwarf GJ 3634. Detection with HARPS velocimetry and transit search with Spitzer photometry
Bonfils, X.; Gillon, Michaël ULg; Forveille, T. et al

in Astronomy and Astrophysics (2011), 528

We report on the detection of GJ 3634b, a super-Earth of mass m sin i = 7.0[SUB]-0.8[SUP]+0.9[/SUP]~M_⊕[/SUB] and period P = 2.64561 ± 0.00066 day. Its host star is a M2.5 dwarf, has a mass of 0.45 ± 0.05 ... [more ▼]

We report on the detection of GJ 3634b, a super-Earth of mass m sin i = 7.0[SUB]-0.8[SUP]+0.9[/SUP]~M_⊕[/SUB] and period P = 2.64561 ± 0.00066 day. Its host star is a M2.5 dwarf, has a mass of 0.45 ± 0.05 M[SUB]ȯ[/SUB], a radius of 0.43 ± 0.03 R[SUB]ȯ[/SUB] and lies 19.8 ± 0.6 pc away from our Sun. The planet is detected after a radial-velocity campaign using the ESO/Harps spectrograph. GJ 3634b had an a priori geometric probability to undergo transit of ~7% and, if telluric in composition, a non-grazing transit would produce a photometric dip of ≲0.1%. We therefore followed-up upon the RV detection with photometric observations using the 4.5-μm band of the IRAC imager onboard Spitzer. Our six-hour long light curve excludes that a transit occurs for 2σ of the probable transit window, decreasing the probability that GJ 3634b undergoes transit to ~0.5%. Based on observations made with the Harps instrument on the ESO 3.6-m telescope at La Silla Observatory under program IDs 082.C-0718(B) and183.C-0437(A), and observations made with Warm Spitzer under program 60027.Radial-velocity and photometric tables (Tables 2 and 3) are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via <A href="http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/528/A111">http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/528/A111</A> [less ▲]

Detailed reference viewed: 35 (0 ULg)