References of "Nelemans, G"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailGaia Data Release 1. Open cluster astrometry: performance, limitations, and future prospects
Gaia Collaboration; van Leeuwen, F.; Vallenari, A. et al

in Astronomy and Astrophysics (2017), 601

Context. The first Gaia Data Release contains the Tycho-Gaia Astrometric Solution (TGAS). This is a subset of about 2 million stars for which, besides the position and photometry, the proper motion and ... [more ▼]

Context. The first Gaia Data Release contains the Tycho-Gaia Astrometric Solution (TGAS). This is a subset of about 2 million stars for which, besides the position and photometry, the proper motion and parallax are calculated using Hipparcos and Tycho-2 positions in 1991.25 as prior information. <BR /> Aims: We investigate the scientific potential and limitations of the TGAS component by means of the astrometric data for open clusters. <BR /> Methods: Mean cluster parallax and proper motion values are derived taking into account the error correlations within the astrometric solutions for individual stars, an estimate of the internal velocity dispersion in the cluster, and, where relevant, the effects of the depth of the cluster along the line of sight. Internal consistency of the TGAS data is assessed. <BR /> Results: Values given for standard uncertainties are still inaccurate and may lead to unrealistic unit-weight standard deviations of least squares solutions for cluster parameters. Reconstructed mean cluster parallax and proper motion values are generally in very good agreement with earlier Hipparcos-based determination, although the Gaia mean parallax for the Pleiades is a significant exception. We have no current explanation for that discrepancy. Most clusters are observed to extend to nearly 15 pc from the cluster centre, and it will be up to future Gaia releases to establish whether those potential cluster-member stars are still dynamically bound to the clusters. <BR /> Conclusions: The Gaia DR1 provides the means to examine open clusters far beyond their more easily visible cores, and can provide membership assessments based on proper motions and parallaxes. A combined HR diagram shows the same features as observed before using the Hipparcos data, with clearly increased luminosities for older A and F dwarfs. Tables D.1 to D.19 are also available at the CDS via anonymous ftp to <A href="http://cdsarc.u-strasbg.fr">http://cdsarc.u-strasbg.fr</A> (<A href="http://130.79.128.5">http://130.79.128.5</A>) or via <A href="http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/601/A19">http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/601/A19</A> [less ▲]

Detailed reference viewed: 34 (4 ULg)
Full Text
Peer Reviewed
See detailGaia Data Release 1. Summary of the astrometric, photometric, and survey properties
Gaia Collaboration; Brown, A. G. A.; Vallenari, A. et al

in Astronomy and Astrophysics (2016), 595

Context. At about 1000 days after the launch of Gaia we present the first Gaia data release, Gaia DR1, consisting of astrometry and photometry for over 1 billion sources brighter than magnitude 20.7. <BR ... [more ▼]

Context. At about 1000 days after the launch of Gaia we present the first Gaia data release, Gaia DR1, consisting of astrometry and photometry for over 1 billion sources brighter than magnitude 20.7. <BR /> Aims: A summary of Gaia DR1 is presented along with illustrations of the scientific quality of the data, followed by a discussion of the limitations due to the preliminary nature of this release. <BR /> Methods: The raw data collected by Gaia during the first 14 months of the mission have been processed by the Gaia Data Processing and Analysis Consortium (DPAC) and turned into an astrometric and photometric catalogue. <BR /> Results: Gaia DR1 consists of three components: a primary astrometric data set which contains the positions, parallaxes, and mean proper motions for about 2 million of the brightest stars in common with the Hipparcos and Tycho-2 catalogues - a realisation of the Tycho-Gaia Astrometric Solution (TGAS) - and a secondary astrometric data set containing the positions for an additional 1.1 billion sources. The second component is the photometric data set, consisting of mean G-band magnitudes for all sources. The G-band light curves and the characteristics of 3000 Cepheid and RR Lyrae stars, observed at high cadence around the south ecliptic pole, form the third component. For the primary astrometric data set the typical uncertainty is about 0.3 mas for the positions and parallaxes, and about 1 mas yr[SUP]-1[/SUP] for the proper motions. A systematic component of 0.3 mas should be added to the parallax uncertainties. For the subset of 94 000 Hipparcos stars in the primary data set, the proper motions are much more precise at about 0.06 mas yr[SUP]-1[/SUP]. For the secondary astrometric data set, the typical uncertainty of the positions is 10 mas. The median uncertainties on the mean G-band magnitudes range from the mmag level to 0.03 mag over the magnitude range 5 to 20.7. <BR /> Conclusions: Gaia DR1 is an important milestone ahead of the next Gaia data release, which will feature five-parameter astrometry for all sources. Extensive validation shows that Gaia DR1 represents a major advance in the mapping of the heavens and the availability of basic stellar data that underpin observational astrophysics. Nevertheless, the very preliminary nature of this first Gaia data release does lead to a number of important limitations to the data quality which should be carefully considered before drawing conclusions from the data. [less ▲]

Detailed reference viewed: 31 (4 ULg)
Full Text
Peer Reviewed
See detailThe Gaia mission
Gaia Collaboration; Prusti, T.; de Bruijne, J. H. J. et al

in Astronomy and Astrophysics (2016), 595

Gaia is a cornerstone mission in the science programme of the EuropeanSpace Agency (ESA). The spacecraft construction was approved in 2006, following a study in which the original interferometric concept ... [more ▼]

Gaia is a cornerstone mission in the science programme of the EuropeanSpace Agency (ESA). The spacecraft construction was approved in 2006, following a study in which the original interferometric concept was changed to a direct-imaging approach. Both the spacecraft and the payload were built by European industry. The involvement of the scientific community focusses on data processing for which the international Gaia Data Processing and Analysis Consortium (DPAC) was selected in 2007. Gaia was launched on 19 December 2013 and arrived at its operating point, the second Lagrange point of the Sun-Earth-Moon system, a few weeks later. The commissioning of the spacecraft and payload was completed on 19 July 2014. The nominal five-year mission started with four weeks of special, ecliptic-pole scanning and subsequently transferred into full-sky scanning mode. We recall the scientific goals of Gaia and give a description of the as-built spacecraft that is currently (mid-2016) being operated to achieve these goals. We pay special attention to the payload module, the performance of which is closely related to the scientific performance of the mission. We provide a summary of the commissioning activities and findings, followed by a description of the routine operational mode. We summarise scientific performance estimates on the basis of in-orbit operations. Several intermediate Gaia data releases are planned and the data can be retrieved from the Gaia Archive, which is available through the Gaia home page. <A href="http://www.cosmos.esa.int/gaia">http://www.cosmos.esa.int/gaia</A> [less ▲]

Detailed reference viewed: 54 (7 ULg)
Full Text
See detailThe Gaia-ESO Public Spectroscopic Survey
Gilmore, G.; Randich, S.; Asplund, M. et al

in The Messenger (2012), 147

The Gaia-ESO Public Spectroscopic Survey has begun and will obtain high quality spectroscopy of some 100000 Milky Way stars, in the field and in open clusters, down to magnitude 19, systematically ... [more ▼]

The Gaia-ESO Public Spectroscopic Survey has begun and will obtain high quality spectroscopy of some 100000 Milky Way stars, in the field and in open clusters, down to magnitude 19, systematically covering all the major components of the Milky Way. This survey will provide the first homogeneous overview of the distributions of kinematics and chemical element abundances in the Galaxy. The motivation, organisation and implementation of the Gaia-ESO Survey are described, emphasising the complementarity with the ESA Gaia mission. Spectra from the very first observing run of the survey are presented. [less ▲]

Detailed reference viewed: 229 (1 ULg)
Full Text
Peer Reviewed
See detailGravitational settling in pulsating subdwarf B stars and their progenitors
Hu, Haili; Glebbeek, E.; Thoul, Anne ULg et al

in Astronomy and Astrophysics (2010), 511

Context. Diffusion of atoms can be important during quiescent phases of stellar evolution. Particularly in the very thin inert envelopes of subdwarf B stars, diffusive movements will considerably change ... [more ▼]

Context. Diffusion of atoms can be important during quiescent phases of stellar evolution. Particularly in the very thin inert envelopes of subdwarf B stars, diffusive movements will considerably change the envelope structure and the surface abundances on a short timescale. Also, the subdwarfs will inherit the effects of diffusion in their direct progenitors, namely giants near the tip of the red giant branch. This will influence the global evolution and the pulsational properties of subdwarf B stars. <BR /> Aims: We investigate the impact of gravitational settling, thermal diffusion and concentration diffusion on the evolution and pulsations of subdwarf B stars. Although radiative levitation is not explicitly calculated, we evaluate its effect by approximating the resulting iron accumulation in the driving region. This allows us to study the excitation of the pulsation modes, albeit in a parametric fashion. Our diffusive stellar models are compared with models evolved without diffusion. <BR /> Methods: We use a detailed stellar evolution code to solve simultaneously the equations of stellar structure and evolution, including the composition changes due to diffusion. The diffusion calculations are performed for a multicomponent fluid using diffusion coefficients derived from a screened Coulomb potential. We constructed subdwarf B models with a mass of 0.465 M[SUB]ȯ[/SUB] from a 1 M[SUB]ȯ[/SUB] and 3 M[SUB]ȯ[/SUB] zero-age main sequence progenitor. The low mass star ignited helium in an energetic flash, while the intermediate mass star started helium fusion gently. For each progenitor type we computed series with and without atomic diffusion. <BR /> Results: Atomic diffusion in red giants causes the helium core mass at the onset of helium ignition to be larger. We find an increase of 0.0015 M[SUB]ȯ[/SUB] for the 1 M[SUB]ȯ[/SUB] model and 0.0036 M[SUB]ȯ[/SUB] for the 3 M[SUB]ȯ[/SUB] model. The effects on the red giant surface abundances are small after the first dredge up. The evolutionary tracks of the diffusive subdwarf B models are shifted to lower surface gravities and effective temperatures due to outward diffusion of hydrogen. This affects both the frequencies of the excited modes and the overall frequency spectrum. Especially the structure and pulsations of the post-non-degenerate sdB star are drastically altered, proving that atomic diffusion cannot be ignored in these stars. Sinking of metals could to some extent increase the gravities and temperatures due to the associated decrease in the stellar opacity. However, this effect should be limited as it is counteracted by radiative levitation. [less ▲]

Detailed reference viewed: 23 (13 ULg)
Full Text
Peer Reviewed
See detailImpact of helium diffusion and helium-flash-induced carbon production on gravity-mode pulsations in subdwarf B stars
Hu, Haili; Nelemans, G.; Aerts, C. et al

in Astronomy and Astrophysics (2009), 508

Context: Realistic stellar models are essential to the forward modelling approach in asteroseismology. For practicality however, certain model assumptions are also required. For example, in the case of ... [more ▼]

Context: Realistic stellar models are essential to the forward modelling approach in asteroseismology. For practicality however, certain model assumptions are also required. For example, in the case of subdwarf B stars, one usually starts with zero-age horizontal branch structures without following the progenitor evolution. <BR /> Aims: We analyse the effects of common assumptions in subdwarf B models on the g-mode pulsational properties. We investigate if and how the pulsation periods are affected by the H-profile in the core-envelope transition zone. Furthermore, the effects of C-production and convective mixing during the core helium flash are evaluated. Finally, we reanalyse the effects of stellar opacities on the mode excitation in subdwarf B stars.<BR /> Methods: We computed detailed stellar evolutionary models of subdwarf B stars, and their non-adiabatic pulsational properties. Atomic diffusion of H and He is included consistently during the evolution calculations. The number fractions of Fe and Ni are gradually increased by up to a factor of 10 around log T = 5.3. This is necessary for mode excitation and to approximate the resulting effects of radiative levitation. We performed a pulsational stability analysis on a grid of subdwarf B models constructed with OPAL and OP opacities.<BR /> Results: We find that helium settling causes a shift in the theoretical blue edge of the g-mode instability domain to higher effective temperatures. This results in a closer match to the observed instability strip of long-period sdB pulsators, particularly for l â ¤ 3 modes. We show further that the g-mode spectrum is extremely sensitive to the H-profile in the core-envelope transition zone. If atomic diffusion is efficient, details of the initial shape of the profile become less important in the course of evolution. Diffusion broadens the chemical gradients, and results in less effective mode trapping and different pulsation periods. Furthermore, we report on the possible consequences of the He-flash for the g-modes. The outer edge of a flash-induced convective region introduces an additional chemical transition in the stellar models, and the corresponding spike in the Brünt-Väisälä frequency produces a complicated mode trapping signature in the period spacings. <BR /> [less ▲]

Detailed reference viewed: 24 (3 ULg)
Full Text
Peer Reviewed
See detailA seismic approach to testing different formation channels of subdwarf B stars
Hu, Haili; Dupret, Marc-Antoine ULg; Aerts, C. et al

in Astronomy and Astrophysics (2008), 490

Context: There are many unknowns in the formation of subdwarf B stars. Different formation channels are considered to be possible and to lead to a variety of helium-burning subdwarfs. All seismic models ... [more ▼]

Context: There are many unknowns in the formation of subdwarf B stars. Different formation channels are considered to be possible and to lead to a variety of helium-burning subdwarfs. All seismic models to date, however, assume that a subdwarf B star is a post-helium-flash-core surrounded by a thin inert layer of hydrogen. Aims: We examine an alternative formation channel, in which the subdwarf B star originates from a massive (>~2 M[SUB]o[/SUB]) red giant with a non-degenerate helium-core. Although these subdwarfs may evolve through the same region of the log g-T_eff diagram as the canonical post-flash subdwarfs, their interior structure is rather different. We examine how this difference affects their pulsation modes and whether it can be observed. Methods: Using detailed stellar evolution calculations we construct subdwarf B models from both formation channels. The iron accumulation in the driving region due to diffusion, which causes the excitation of the modes, is approximated by a Gaussian function. The pulsation modes and frequencies are calculated with a non-adiabatic pulsation code. Results: A detailed comparison of two subdwarf B models from different channels, but with the same log g and T_eff, shows that their mode excitation is different. The excited frequencies are lower for the post-flash than for the post-non-degenerate subdwarf B star. This is mainly due to the differing chemical composition of the stellar envelope. A more general comparison between two grids of models shows that the excited frequencies of most post-non-degenerate subdwarfs cannot be well-matched with the frequencies of post-flash subdwarfs. In the rare event that an acceptable seismic match is found, additional information, such as mode identification and log g and T_eff determinations, allows us to distinguish between the two formation channels. [less ▲]

Detailed reference viewed: 29 (2 ULg)