References of "Nakajima, H"
Bookmark and Share    
See detailIncrease in northern hemisphere stratospheric hydrogen chloride over recent years
Mahieu, Emmanuel ULg; Chipperfield, MP; Notholt, J et al

Poster (2014, October 07)

Detailed reference viewed: 10 (1 ULg)
Full Text
Peer Reviewed
See detailObserved and simulated time evolution of HCl, ClONO2, and HF total column abundances
Kohlhepp, R; Ruhnke, R; Chipperfield, M P et al

in Atmospheric Chemistry and Physics (2012), 12(7), 3527--3556

Time series of total column abundances of hydrogen chloride (HCl), chlorine nitrate (ClONO2), and hydrogen fluoride (HF) were determined from ground-based Fourier transform infrared (FTIR) spectra ... [more ▼]

Time series of total column abundances of hydrogen chloride (HCl), chlorine nitrate (ClONO2), and hydrogen fluoride (HF) were determined from ground-based Fourier transform infrared (FTIR) spectra recorded at 17 sites belonging to the Network for the Detection of Atmospheric Composition Change (NDACC) and located between 80.05°N and 77.82°S. By providing such a near-global overview on ground-based measurements of the two major stratospheric chlorine reservoir species, HCl and ClONO2, the present study is able to confirm the decrease of the atmospheric inorganic chlorine abundance during the last few years. This decrease is expected following the 1987 Montreal Protocol and its amendments and adjustments, where restrictions and a subsequent phase-out of the prominent anthropogenic chlorine source gases (solvents, chlorofluorocarbons) were agreed upon to enable a stabilisation and recovery of the stratospheric ozone layer. The atmospheric fluorine content is expected to be influenced by the Montreal Protocol, too, because most of the banned anthropogenic gases also represent important fluorine sources. But many of the substitutes to the banned gases also contain fluorine so that the HF total column abundance is expected to have continued to increase during the last few years. The measurements are compared with calculations from five different models: the two-dimensional Bremen model, the two chemistry-transport models KASIMA and SLIMCAT, and the two chemistry-climate models EMAC and SOCOL. Thereby, the ability of the models to reproduce the absolute total column amounts, the seasonal cycles, and the temporal evolution found in the FTIR measurements is investigated and inter-compared. This is especially interesting because the models have different architectures. The overall agreement between the measurements and models for the total column abundances and the seasonal cycles is good. Linear trends of HCl, ClONO2, and HF are calculated from both measurement and model time series data, with a focus on the time range 2000–2009. This period is chosen because from most of the measurement sites taking part in this study, data are available during these years. The precision of the trends is estimated with the bootstrap resampling method. The sensitivity of the trend results with respect to the fitting function, the time of year chosen and time series length is investigated, as well as a bias due to the irregular sampling of the measurements. The measurements and model results investigated here agree qualitatively on a decrease of the chlorine species by around 1%yr-1. The models simulate an increase of HF of around 1%yr-1. This also agrees well with most of the measurements, but some of the FTIR series in the Northern Hemisphere show a stabilisation or even a decrease in the last few years. In general, for all three gases, the measured trends vary more strongly with latitude and hemisphere than the modelled trends. Relative to the FTIR measurements, the models tend to underestimate the decreasing chlorine trends and to overestimate the fluorine increase in the Northern Hemisphere. At most sites, the models simulate a stronger decrease of ClONO2 than of HCl. In the FTIR measurements, this difference between the trends of HCl and ClONO2 depends strongly on latitude, especially in the Northern Hemisphere. [less ▲]

Detailed reference viewed: 70 (14 ULg)
Full Text
Peer Reviewed
See detailValidation of MIPAS HNO3 operational data
Wang, D. Y.; Hopfner, Michael; Blom, C. E. et al

in Atmospheric Chemistry and Physics (2007), 7(18), 4905-4934

Nitric acid (HNO3) is one of the key products that are operationally retrieved by the European Space Agency (ESA) from the emission spectra measured by the Michelson Interferometer for Passive Atmospheric ... [more ▼]

Nitric acid (HNO3) is one of the key products that are operationally retrieved by the European Space Agency (ESA) from the emission spectra measured by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) onboard ENVISAT. The product version 4.61/4.62 for the observation period between July 2002 and March 2004 is validated by comparisons with a number of independent observations from ground-based stations, aircraft/balloon campaigns, and satellites. Individual HNO3 profiles of the ESA MIPAS level-2 product show good agreement with those of MIPAS-B and MIPAS-STR (the balloon and aircraft version of MIPAS, respectively), and the balloon-borne infrared spectrometers MkIV and SPIRALE, mostly matching the reference data within the combined instrument error bars. In most cases differences between the correlative measurement pairs are less than 1 ppbv (5-10%) throughout the entire altitude range up to about 38 km (similar to 6 hPa), and below 0.5 ppbv (15-20% or more) above 30 km (similar to 17 hPa). However, differences up to 4 ppbv compared to MkIV have been found at high latitudes in December 2002 in the presence of polar stratospheric clouds. The degree of consistency is further largely affected by the temporal and spatial coincidence, and differences of 2 ppbv may be observed between 22 and 26 km (similar to 50 and 30 hPa) at high latitudes near the vortex boundary, due to large horizontal inhomogeneity of HNO3. Similar features are also observed in the mean differences of the MIPAS ESA HNO3 VMRs with respect to the ground-based FTIR measurements at five stations, aircraft-based SAFIRE-A and ASUR, and the balloon campaign IBEX. The mean relative differences between the MIPAS and FTIR HNO3 partial columns are within +/- 2%, comparable to the MIPAS systematic error of similar to 2%. For the vertical profiles, the biases between the MIPAS and FTIR data are generally below 10% in the altitudes of 10 to 30 km. The MIPAS and SAFIRE HNO3 data generally match within their total error bars for the mid and high latitude flights, despite the larger atmospheric inhomogeneities that characterize the measurement scenario at higher latitudes. The MIPAS and ASUR comparison reveals generally good agreements better than 10-13% at 20-34 km. The MIPAS and IBEX measurements agree reasonably well (mean relative differences within +/- 15%) between 17 and 32 km. Statistical comparisons of the MIPAS profiles correlated with those of Odin/SMR, ILAS-II, and ACE-FTS generally show good consistency. The mean differences averaged over individual latitude bands or all bands are within the combined instrument errors, and generally within 1, 0.5, and 0.3 ppbv between 10 and 40 km (similar to 260 and 4.5 hPa) for Odin/SMR, ILAS-II, and ACE-FTS, respectively. The standard deviations of the differences are between 1 to 2 ppbv. The standard deviations for the satellite comparisons and for almost all other comparisons are generally larger than the estimated measurement uncertainty. This is associated with the temporal and spatial coincidence error and the horizontal smoothing error which are not taken into account in our error budget. Both errors become large when the spatial variability of the target molecule is high. [less ▲]

Detailed reference viewed: 60 (17 ULg)