References of "Moutier, Emmanuel"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailRetinoic acid receptors recognise the mouse genome through binding elements with diverse spacing and topology
Moutier, Emmanuel; Ye, Tao; Choukrallah, Mohamed-Amin et al

in Journal of Biological Chemistry (2012)

Retinoic Acid Receptors (RARs) heterodimerise with Retinoid X Receptors (RXRs) and bind to RA-response elements (RAREs) in the regulatory regions of their target genes. While previous studies on limited ... [more ▼]

Retinoic Acid Receptors (RARs) heterodimerise with Retinoid X Receptors (RXRs) and bind to RA-response elements (RAREs) in the regulatory regions of their target genes. While previous studies on limited sets of RA-regulated genes have defined canonical RAREs as direct repeats of the consensus RGKTCA separated by 1, 2 or 5 nucleotides (DR1, DR2, DR5), we show that in mouse embryoid bodies or F9 embryonal carcinoma cells, RARs occupy a large repertoire of sites with DR0, DR8 and IR0 (inverted repeat 0) elements. Recombinant RAR-RXR binds these non-canonical spacings in vitro with comparable affinities to DR2 and DR5. Most DR8 elements comprise three half sites with DR2 and DR0 spacings. This specific half site organisation constitutes a previously unrecognised, but frequent signature of RAR binding elements. In functional assays, DR8 and IR0 elements act as independent RAREs, while DR0 does not. Our results reveal an unexpected diversity in the spacing and topology of binding elements for the RAR-RXR heterodimer. The differential ability of RAR-RXR bound to DR0 compared to DR2, DR5 and DR8 to mediate RA-dependent transcriptional activation indicates that half site spacing allosterically regulates RAR function. [less ▲]

Detailed reference viewed: 16 (3 ULg)
Full Text
Peer Reviewed
See detailCell-specific interaction of retinoic acid receptors with target genes in mouse embryonic fibroblasts and embryonic stem cells.
Delacroix, Laurence ULg; Moutier, Emmanuel; Altobelli, Gioia et al

in Molecular & Cellular Biology (2010), 30(1), 231-44

All-trans retinoic acid (RA) induces transforming growth factor beta (TGF-beta)-dependent autocrine growth of mouse embryonic fibroblasts (MEFs). We have used chromatin immunoprecipitation to map 354 RA ... [more ▼]

All-trans retinoic acid (RA) induces transforming growth factor beta (TGF-beta)-dependent autocrine growth of mouse embryonic fibroblasts (MEFs). We have used chromatin immunoprecipitation to map 354 RA receptor (RAR) binding loci in MEFs, most of which were similarly occupied by the RAR alpha and RAR gamma receptors. Only a subset of the genes associated with these loci are regulated by RA, among which are several critical components of the TGF-beta pathway. We also show RAR binding to a novel series of target genes involved in cell cycle regulation, transformation, and metastasis, suggesting new pathways by which RA may regulate proliferation and cancer. Few of the RAR binding loci contained consensus direct-repeat (DR)-type elements. The majority comprised either degenerate DRs or no identifiable DRs but anomalously spaced half sites. Furthermore, we identify 462 RAR target loci in embryonic stem (ES) cells and show that their occupancy is cell type specific. Our results also show that differences in the chromatin landscape regulate the accessibility of a subset of more than 700 identified loci to RARs, thus modulating the repertoire of target genes that can be regulated and the biological effects of RA. [less ▲]

Detailed reference viewed: 15 (3 ULg)