References of "Mourard, D"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailTests with a Carlina-type diluted telescope. Primary coherencing
Le Coroller, H.; Dejonghe, J.; Regal, X. et al

in Astronomy and Astrophysics (2012), 539

Aims: Studies are under way to propose a new generation of post-VLTI interferometers. The Carlina concept studied at the Haute-Provence Observatory is one of the proposed solutions. It consists in an ... [more ▼]

Aims: Studies are under way to propose a new generation of post-VLTI interferometers. The Carlina concept studied at the Haute-Provence Observatory is one of the proposed solutions. It consists in an optical interferometer configured like a diluted version of the Arecibo radio telescope: above the diluted primary mirror made of fixed cospherical segments, a helium balloon (or cables suspended between two mountains), carries a gondola containing the focal optics. Since 2003, we have been building a technical demonstrator of this diluted telescope. First fringes were obtained in May 2004 with two closely-spaced primary segments and a CCD on the focal gondola. We have been testing the whole optical train with three primary mirrors. The main aim of this article is to describe the metrology that we have conceived, and tested under the helium balloon to align the primary mirrors separate by 5-10 m on the ground with an accuracy of a few microns. Methods: Getting stellar fringes using delay lines is the main difficulty for astronomical interferometers. Carlina does not use delay lines, but the primary segments have to be positioned on a sphere i.e. coherencing the primary mirrors. As described in this paper, we used a supercontinuum laser source to coherence the primary segments. We characterize the Carlina's performances by testing its whole optical train: servo loop, metrology, and the focal gondola. Results: The servo loop stabilizes the mirror of metrology under the helium balloon with an accuracy better than 5 mm while it moves horizontally by 30 cm in open loop by 10-20 km/h of wind. We have obtained the white fringes of metrology; i.e., the three mirrors are aligned (cospherized) with an accuracy of ≈1 μm. We show data proving the stability of fringes over 15 min, therefore providing evidence that the mechanical parts are stabilized within a few microns. This is an important step that demonstrates the feasibility of building a diluted telescope using cables strained between cliffs or under a balloon. Carlina, like the MMT or LBT, could be one of the first members of a new class of telescopes named diluted telescopes. [less ▲]

Detailed reference viewed: 19 (3 ULg)
See detailThe Fourier-Kelvin Stellar Interferometer: Exploring Exoplanetary Systems with an Infrared Probe-class Mission
Barry, R. K.; Danchi, W. C.; Lopez, B. et al

in Coudé du Foresto, Vincent; Gelino, Dawn; Ribas, Ignasi (Eds.) Pathways Towards Habitable Planets (2010, October 01)

We report results of a recent engineering study of an enhanced version of the Fourier-Kelvin Stellar Interferometer (FKSI) that includes 1-m diameter primary mirrors, a 20-m baseline, a sun shield with a ... [more ▼]

We report results of a recent engineering study of an enhanced version of the Fourier-Kelvin Stellar Interferometer (FKSI) that includes 1-m diameter primary mirrors, a 20-m baseline, a sun shield with a ±45° Field-of-Regard (FoR), and 40K operating temperature. The enhanced FKSI is a two-element nulling interferometer operating in the mid-infrared (e.g. ˜ 5-15 μm) designed to measure exozodiacal debris disks around nearby stars with a sensitivity better than one solar system zodi (SSZ) and to characterize the atmospheres of a large sample of known exoplanets. The modifications to the original FKSI design also allows observations of the atmospheres of many super-Earths and a few Earth twins using a combination of spatial modulation and spectral analysis. [less ▲]

Detailed reference viewed: 18 (0 ULg)
Full Text
See detailInfrared Detection and Characterization of Debris Disks, Exozodiacal Dust, and Exoplanets: The FKSI Mission Concept
Danchi, W. C.; Barry, R. K.; Lopez, B. et al

in Coudé du Foresto, Vincent; Gelino, Dawn; Ribas, Ignasi (Eds.) Pathways Towards Habitable Planets (2010, October 01)

The Fourier-Kelvin Stellar Interferometer (FKSI) is a mission concept for a nulling interferometer for the near-to-mid-infrared spectral region. FKSI is conceived as a mid-sized strategic or Probe class ... [more ▼]

The Fourier-Kelvin Stellar Interferometer (FKSI) is a mission concept for a nulling interferometer for the near-to-mid-infrared spectral region. FKSI is conceived as a mid-sized strategic or Probe class mission. FKSI has been endorsed by the Exoplanet Community Forum 2008 as such a mission and has been costed to be within the expected budget. The current design of FKSI is a two-element nulling interferometer. The two telescopes, separated by 12.5m, are precisely pointed (by small steering mirrors) on the target star. The two path lengths are accurately controlled to be the same to within a few nanometers. A phase shifter/beam combiner (Mach-Zehnder interferometer) produces an output beam consisting of the nulled sum of the target planet’s light and the host star’s light. When properly oriented, the starlight is nulled by a factor of 10[SUP]-4[/SUP], and the planet light is undiminished. Accurate modeling of the signal is used to subtract the residual starlight, permitting the detection of planets much fainter than the host star. The current version of FKSI with 0.5-m apertures and waveband 3-8 μm has the following main capabilities: (1) detect exozodiacal emission levels to that of our own solar system (Solar System Zodi) around nearby F, G, and K stars; (2) characterize spectroscopically the atmospheres of a large number of known non-transiting planets; (3) survey and characterize nearby stars for planets down to 2 R[SUB]earth[/SUB] from just inside the habitable zone and inward. An enhanced version of FKSI with 1-m apertures separated by 20 m and cooled to 40 K, with science waveband 5-15 μm, allows for the detection and characterization of 2 R[SUB]earth[/SUB] super-Earths and smaller planets in the habitable zone around stars within about 30 pc. [less ▲]

Detailed reference viewed: 16 (0 ULg)
See detailScience with the Carlina hypertelescope
Le Coroller, H.; Dejonghe, J.; Regal, X. et al

Poster (2010, September)

Studies are currently underway to propose a generation of post-VLTI interferometers (Carlina, OHANA, Keops, etc.). Such interferometers will open new fields of research in astrophysics by imaging the ... [more ▼]

Studies are currently underway to propose a generation of post-VLTI interferometers (Carlina, OHANA, Keops, etc.). Such interferometers will open new fields of research in astrophysics by imaging the surfaces of supergiant stars, gravitational microlensing, AGN, Hot Jupiters, etc. To achieve these goals, they will have to respond to several criteria: to provide very high angular resolution (baselines > 100 m), to be equipped with a large number of mirrors (rich UV coverage), and to be able to accommodate high tech instrumentation such as an Adaptive Optics system and a coronagraph. We describe the optical Carlina architecture and show that it fulfills all these criteria. We give new results obtained with the prototype of Carlina currently built at Observatoire de Haute-Provence. Considering its expected specifications, Carlina will operate in complementarity with ELTs and very long baseline interferometers. [less ▲]

Detailed reference viewed: 31 (10 ULg)
Full Text
Peer Reviewed
See detailDarwin-A Mission to Detect and Search for Life on Extrasolar Planets
Cockell, C. S.; Léger, A.; Fridlund, M. et al

in Astrobiology (2009), 9(1)

The discovery of extrasolar planets is one of the greatest achievements of modern astronomy. The detection of planets that vary widely in mass demonstrates that extrasolar planets of low mass exist. In ... [more ▼]

The discovery of extrasolar planets is one of the greatest achievements of modern astronomy. The detection of planets that vary widely in mass demonstrates that extrasolar planets of low mass exist. In this paper, we describe a mission, called Darwin, whose primary goal is the search for, and characterization of, terrestrial extrasolar planets and the search for life. Accomplishing the mission objectives will require collaborative science across disciplines, including astrophysics, planetary sciences, chemistry, and microbiology. Darwin is designed to detect rocky planets similar to Earth and perform spectroscopic analysis at mid-infrared wavelengths (6-20 mum), where an advantageous contrast ratio between star and planet occurs. The baseline mission is projected to last 5 years and consists of approximately 200 individual target stars. Among these, 25-50 planetary systems can be studied spectroscopically, which will include the search for gases such as CO[SUB]2[/SUB], H[SUB]2[/SUB]O, CH[SUB]4[/SUB], and O[SUB]3[/SUB]. Many of the key technologies required for the construction of Darwin have already been demonstrated, and the remainder are estimated to be mature in the near future. Darwin is a mission that will ignite intense interest in both the research community and the wider public. [less ▲]

Detailed reference viewed: 182 (18 ULg)
Full Text
Peer Reviewed
See detailPEGASE, an infrared interferometer to study stellar environments and low mass companions around nearby stars
Ollivier, M.; Absil, Olivier ULg; Allard, F. et al

in Experimental Astronomy (2009), 23

PEGASE is a mission dedicated to the exploration of the environment (including habitable zone) of young and solar-type stars (particularly those in the DARWIN catalogue) and the observation of low mass ... [more ▼]

PEGASE is a mission dedicated to the exploration of the environment (including habitable zone) of young and solar-type stars (particularly those in the DARWIN catalogue) and the observation of low mass companions around nearby stars. It is a space interferometer project composed of three free flying spacecraft, respectively featuring two 40 cm siderostats and a beam combiner working in the visible and near infrared. It has been proposed to ESA as an answer to the first ``Cosmic Vision'' call for proposals, as an M mission. The concept also enables full-scale demonstration of space nulling interferometry operation for DARWIN. [less ▲]

Detailed reference viewed: 66 (9 ULg)
Full Text
See detailGENIE: a Ground-Based European Nulling Instrument at ESO Very Large Telescope Interferometer
Gondoin, P.; den Hartog, R.; Fridlund, M. et al

in Richichi, A.; Delplancke, F.; Paresce, F. (Eds.) et al The Power of Optical/IR Interferometry: Recent Scientific Results and 2nd Generation Instrumentation (2008)

Darwin is one of the most challenging space projects ever considered by the European Space Agency (ESA). Its principal objectives are to detect Earth-like planets around nearby stars, to analyze the ... [more ▼]

Darwin is one of the most challenging space projects ever considered by the European Space Agency (ESA). Its principal objectives are to detect Earth-like planets around nearby stars, to analyze the composition of their atmospheres and to assess their ability to sustain life as we know it. Darwin is conceived as a space ``nulling interferometer'' which makes use of on-axis destructive interferences to extinguish the stellar light while keeping the off-axis signal of the orbiting planet. Within the frame of the Darwin program, definition studies of a Ground based European Nulling Interferometry Experiment, called GENIE, were completed in 2005. This instrument built around the Very Large Telescope Interferometer (VLTI) in Paranal will test some of the key technologies required for the Darwin Infrared Space Interferometer. GENIE will operate in the L' band around 3.8 microns as a single Bracewell nulling interferometer using either two Auxiliary Telescopes (ATs) or two 8m Unit Telescopes (UTs). Its science objectives include the detection and characterization of dust disks and low-mass companions around nearby stars. [less ▲]

Detailed reference viewed: 8 (0 ULg)
Full Text
See detailPegase: a space-based nulling interferometer
Le Duigou, J. M.; Ollivier, M.; Léger, A. et al

in Mather, John C.; MacEwen, Howard A.; de Graauw, Mattheus W. M. (Eds.) Space Telescopes and Instrumentation I: Optical, Infrared, and Millimeter (2006, July 01)

The space based mission Pegase was proposed to CNES in the framework of its call for scientific proposals for formation flying missions. This paper presents a summary of the phase-0 performed in 2005. The ... [more ▼]

The space based mission Pegase was proposed to CNES in the framework of its call for scientific proposals for formation flying missions. This paper presents a summary of the phase-0 performed in 2005. The main scientific goal is the spectroscopy of hot Jupiters (Pegasides) and brown dwarfs from 2.5 to 5 mum. The mission can extend to other objectives such as the exploration of the inner part of protoplanetary disks, the study of dust clouds around AGN,... The instrument is basically a two-aperture (D=40 cm) interferometer composed of three satellites, two siderostats and one beam-combiner. The formation is linear and orbits around L2, pointing in the anti-solar direction within a +/-30° cone. The baseline is adjustable from 50 to 500 m in both nulling and visibility measurement modes. The angular resolution ranges from 1 to 20 mas and the spectral resolution is 60. In the nulling mode, a 2.5 nm rms stability of the optical path difference (OPD) and a pointing stability of 30 mas rms impose a two level control architecture. It combines control loops implemented at satellite level and control loops operating inside the payload using fine mechanisms. According to our preliminary study, this mission is feasible within an 8 to 9 years development plan using existing or slightly improved space components, but its cost requires international cooperation. Pegase could be a valuable Darwin/TPF-I pathfinder, with a less demanding, but still ambitious, technological challenge and a high associated scientific return. [less ▲]

Detailed reference viewed: 14 (0 ULg)
Full Text
See detailThe prospects of detecting exo-planets with the Ground-based European Nulling Interferometer Experiment (GENIE)
den Hartog, R.; Absil, Olivier ULg; Gondoin, P. et al

in Aime, C.; Vakili, F. (Eds.) Direct Imaging of Exoplanets: Science & Techniques (2006)

The European Space Agency's Darwin and NASA's Terrestrial Planet Finder (TPF) are among the most challenging space science missions ever considered. Their principal objective is to detect Earth-like ... [more ▼]

The European Space Agency's Darwin and NASA's Terrestrial Planet Finder (TPF) are among the most challenging space science missions ever considered. Their principal objective is to detect Earth-like planets around nearby stars and to characterize their atmospheres. Darwin and TPF-I are currently conceived as nulling interferometers with free-flying telescopes. Within the frame of the Darwin program, the ESA and the European Southern Observatory (ESO), supported by European industries and scientific institutes, have performed two parallel Phase A studies of a ground-based nulling interferometry experiment (GENIE) at the site of ESO's Very Large Telescope Interferometer (VLTI) in Paranal, Chile. GENIE will demonstrate several key technologies required for the Darwin mission. Its science objectives include the detection and characterization of dust disks and low-mass companions around nearby stars. These studies have established detailed instrumental designs, in which GENIE will operate in the L' band around 3.8 microns as a single Bracewell nulling or constructive interferometer, using either two Auxiliary or two Unit Telescopes. The studies were supported by detailed numerical simulations which indicated the possibility of detection and low-resolution spectroscopy in nulling mode of extra-solar giant planets (EGPs) with atmospheric temperatures down to 700 K, provided that a proper calibration of instrumental effects is applied. Detection of circumstellar exo-zodiacal (EZ) dust clouds is possible down to 0.5 mJy, with interesting prospects for the characterization of planet-forming disks. [less ▲]

Detailed reference viewed: 3 (0 ULg)
Full Text
See detailPEGASE: a DARWIN/TPF pathfinder
Ollivier, M.; Le Duigou, J.-M.; Mourard, D. et al

in Aime, C.; Vakili, F. (Eds.) Direct Imaging of Exoplanets: Science & Techniques (2006)

The space mission PEGASE, proposed to the CNES (Centre National d'Etudes Spatiales = French Space Agency) in the framework of its call for scientific proposals : "formation flying missions", is a 2 ... [more ▼]

The space mission PEGASE, proposed to the CNES (Centre National d'Etudes Spatiales = French Space Agency) in the framework of its call for scientific proposals : "formation flying missions", is a 2-aperture interferometer, composed by 3 free flying satellites (2 siderostats and 1 beam combiner), allowing baselines from 50 to 500 m in both nulling and visibility modes. With an angular resolution of a few mas and a spectral resolution of several tens in the spectral range 2.5-5 microns, PEGASE has several goals:science : spectroscopy of hot jupiters (Pegasides) and brown dwarves, exploration of the inner part of protoplanetary diskstechnology : validation in real space conditions of formation flying, nulling and visibility interferometry concepts.PEGASE has been studied at a 0-level. In this paper, we summarize the scientific program and associated technological and mission trade-off coming from this 0-level study. We also discuss how PEGASE can be considered as a TPF/DARWIN pathfinder in an international roadmap towards more complex space interferometry missions such as DARWIN/TPF. [less ▲]

Detailed reference viewed: 10 (0 ULg)
See detailThe Future of Space-Based Interferometry
Carpenter, K. G.; Allen, R.; Benson, J. et al

in “Future Directions for Interferometry” (2006)

Detailed reference viewed: 14 (1 ULg)
See detailCurrent generation arrays: current status, getting the most out of them and future development
Akeson, R.; ten Brummelaar, T.; Eisner, J. et al

in “Future Directions for Interferometry” (2006)

Detailed reference viewed: 7 (0 ULg)
See detailPEGASE... towards DARWIN
Ollivier, M.; Le Duigou, J.-M.; Mourard, D. et al

in Casoli, F.; Contini, T.; Hameury, J.-M. (Eds.) et al SF2A-2005: Semaine de l'Astrophysique Francaise (2005, December 01)

The space mission PEGASE, proposed to CNES in the framework of its call for scientific proposals on "formation flying", is a 2-aperture interferometer, composed by 3 free flying satellites. With an ... [more ▼]

The space mission PEGASE, proposed to CNES in the framework of its call for scientific proposals on "formation flying", is a 2-aperture interferometer, composed by 3 free flying satellites. With an angular resolution of a few mas and a spectral resolution of several tens in the spectral range 2.5-5 mum, PEGASE has several goals: - science: spectroscopy of hot jupiters (Pegasides) and brown dwarves, exploration of the inner part of protoplanetary disks; - technology: validation in real space conditions of formation flying, nulling and visibility interferometry concepts. PEGASE, presently in 0-phase study takes place in the context of DARWIN preparation. We detail in this paper the present situation of this project [less ▲]

Detailed reference viewed: 7 (0 ULg)
See detailThe PEGASE project: characterisation of "Pegasi planets" and Brown Dwarfs
Baudoz, P.; Rouan, D.; Schneider, J. et al

in Combes, F.; Barret, D.; Contini, T. (Eds.) et al SF2A-2004: Semaine de l'Astrophysique Francaise (2004, December 01)

I will present the PEGASE project proposed within the framework of the CNES call for idea on flights in formation. This ambitious project, gathering a dozen laboratories, proposes an interferometry ... [more ▼]

I will present the PEGASE project proposed within the framework of the CNES call for idea on flights in formation. This ambitious project, gathering a dozen laboratories, proposes an interferometry mission in infrared I(1.5 to 6 µm) with spectroscopic capabilities. The bases of the interferometer will reach up to 500m, giving to PEGASE a resolution higher than the milli-arcsecond. The interferometric recombination includes a very simple mode, measurement of the visibility by excursion of the optical path difference and a mode in black fringe or nulling. The very high angular resolution of the instrument and high dynamical range with the nulling mode will allow to consider exciting scientific objectives: the characterization of Pegasids or hot Jupiters, the study of the internal structure and the atmospheres of brown dwarfs and the analysis of the internal areas of proto-planetary disks. I will first of all describe the basic configuration of the mission and will show that its simplicity ensures the feasibility of the project. I will explain then the relevance of such an instrument for the characterization of Pegasids. I will detail finally the various possible technical options to be attached to the initial version, in order to increase the effectiveness of the mission and to extend its scientific objectives. [less ▲]

Detailed reference viewed: 5 (0 ULg)