References of "Mottet, Denis"
     in
Bookmark and Share    
See detailHDAC5 Depletion in Cancer Cells Induces an Oxidative Stress and Leads to a Metabolic Reprogramming toward Glucose and Glutamine Metabolism
Hendrick, Elodie ULg; Peixoto, Paul ULg; Polese, Catherine ULg et al

Poster (2015, February 11)

Histone deacetylases (HDAC) is a family of eighteen enzymes, which modulates the acetylation level of histones and non-histone proteins to regulate gene expression and chromatin structure. Broad-spectrum ... [more ▼]

Histone deacetylases (HDAC) is a family of eighteen enzymes, which modulates the acetylation level of histones and non-histone proteins to regulate gene expression and chromatin structure. Broad-spectrum inhibitors of these enzymes such as SAHA can inhibit tumor growth both in vitro and in vivo and are currently used as anti-cancer agents in clinic. For many years, we are investigating the specific role of individual HDAC members in cancer biology and we have recently demonstrated that specific depletion of HDAC5 using siRNA technology reduced cancer cells proliferation and survival1 The goal of this study is to further understand the molecular mechanisms of action of HDAC5 in cancer cells. Screening transcriptomic study demonstrated that HDAC5 depletion induces a down-regulation of subunits of the complex I of the mitochondrial respiratory chain (NDUFB5-NDUFA3) as well as anti-oxydant proteins (Ferritin, Metalothionein,¿) through modulation of mRNA stability. Therefore, HDAC5 depletion causes a significant increase of ROS production inducing both apoptosis and mechanisms of mitochondria quality control (mitophagy and mitobiogenesis). This HDAC5 depletion-induced mitochondrial dysfunction provokes metabolic adaptation associated with increased importance of glucose and glutamine. Indeed, interference with both glucose and glutamine supply in HDAC5-depleted cancer cells significantly increases apoptotic cell death suggesting that glucose or glutamine deprivation might be combined to HDAC5 inhibition as a therapeutic strategy to kill cancer cells. Our study demonstrated for the first time that specific HDAC5 inhibition induces metabolic reprogramming and provides insight into a valuable experimental strategy for manipulation of specific HDAC5 inhibition and glucose metabolism in therapy against cancer. 1.Peixoto, P. et al. HDAC5 is required for maintenance of pericentric heterochromatin, and controls cell-cycle progression and survival of human cancer cells. Cell death and differentiation, 2012; 1-14. Presenting author e-mail: elodie.hendrick@student.ulg.ac.be [less ▲]

Detailed reference viewed: 18 (3 ULg)
See detailHDAC5 Depletion in Cancer Cells Induces an Oxidative Stress and Leads to a Metabolic Reprogramming toward Glucose and Glutamine Metabolism
Hendrick, Elodie ULg; Peixoto, Paul ULg; Polese, Catherine ULg et al

Poster (2015, January 31)

Histone deacetylases (HDAC) is a family of eighteen enzymes, which modulates the acetylation level of histones and non-histone proteins to regulate gene expression and chromatin structure. Broad-spectrum ... [more ▼]

Histone deacetylases (HDAC) is a family of eighteen enzymes, which modulates the acetylation level of histones and non-histone proteins to regulate gene expression and chromatin structure. Broad-spectrum inhibitors of these enzymes such as SAHA can inhibit tumor growth both in vitro and in vivo and are currently used as anti-cancer agents in clinic. For many years, we are investigating the specific role of individual HDAC members in cancer biology and we have recently demonstrated that specific depletion of HDAC5 using siRNA technology reduced cancer cells proliferation and survival1 The goal of this study is to further understand the molecular mechanisms of action of HDAC5 in cancer cells. Screening transcriptomic study demonstrated that HDAC5 depletion induces a down-regulation of subunits of the complex I of the mitochondrial respiratory chain (NDUFB5-NDUFA3) as well as anti-oxydant proteins (Ferritin, Metalothionein,¿) through modulation of mRNA stability. Therefore, HDAC5 depletion causes a significant increase of ROS production inducing both apoptosis and mechanisms of mitochondria quality control (mitophagy and mitobiogenesis). This HDAC5 depletion-induced mitochondrial dysfunction provokes metabolic adaptation associated with increased importance of glucose and glutamine. Indeed, interference with both glucose and glutamine supply in HDAC5-depleted cancer cells significantly increases apoptotic cell death suggesting that glucose or glutamine deprivation might be combined to HDAC5 inhibition as a therapeutic strategy to kill cancer cells. Our study demonstrated for the first time that specific HDAC5 inhibition induces metabolic reprogramming and provides insight into a valuable experimental strategy for manipulation of specific HDAC5 inhibition and glucose metabolism in therapy against cancer. 1.Peixoto, P. et al. HDAC5 is required for maintenance of pericentric heterochromatin, and controls cell-cycle progression and survival of human cancer cells. Cell death and differentiation, 2012; 1-14. Presenting author e-mail: elodie.hendrick@student.ulg.ac.be [less ▲]

Detailed reference viewed: 15 (1 ULg)
See detailHDAC5 Depletion in Cancer Cells Induces an Oxidative Stress and Leads to a Metabolic Reprogramming toward Glucose and Glutamine Metabolism
Hendrick, Elodie ULg; Peixoto, Paul ULg; Polese, Catherine ULg et al

Poster (2015, January 27)

Histone deacetylases (HDAC) is a family of eighteen enzymes, which modulates the acetylation level of histones and non-histone proteins to regulate gene expression and chromatin structure. Broad-spectrum ... [more ▼]

Histone deacetylases (HDAC) is a family of eighteen enzymes, which modulates the acetylation level of histones and non-histone proteins to regulate gene expression and chromatin structure. Broad-spectrum inhibitors of these enzymes such as SAHA can inhibit tumor growth both in vitro and in vivo and are currently used as anti-cancer agents in clinic. For many years, we are investigating the specific role of individual HDAC members in cancer biology and we have recently demonstrated that specific depletion of HDAC5 using siRNA technology reduced cancer cells proliferation and survival1 The goal of this study is to further understand the molecular mechanisms of action of HDAC5 in cancer cells. Screening transcriptomic study demonstrated that HDAC5 depletion induces a down-regulation of subunits of the complex I of the mitochondrial respiratory chain (NDUFB5-NDUFA3) as well as anti-oxydant proteins (Ferritin, Metalothionein,¿) through modulation of mRNA stability. Therefore, HDAC5 depletion causes a significant increase of ROS production inducing both apoptosis and mechanisms of mitochondria quality control (mitophagy and mitobiogenesis). This HDAC5 depletion-induced mitochondrial dysfunction provokes metabolic adaptation associated with increased importance of glucose and glutamine. Indeed, interference with both glucose and glutamine supply in HDAC5-depleted cancer cells significantly increases apoptotic cell death suggesting that glucose or glutamine deprivation might be combined to HDAC5 inhibition as a therapeutic strategy to kill cancer cells. Our study demonstrated for the first time that specific HDAC5 inhibition induces metabolic reprogramming and provides insight into a valuable experimental strategy for manipulation of specific HDAC5 inhibition and glucose metabolism in therapy against cancer. 1.Peixoto, P. et al. HDAC5 is required for maintenance of pericentric heterochromatin, and controls cell-cycle progression and survival of human cancer cells. Cell death and differentiation, 2012; 1-14. Presenting author e-mail: elodie.hendrick@student.ulg.ac.be [less ▲]

Detailed reference viewed: 8 (0 ULg)
Full Text
Peer Reviewed
See detailImpact of the Structure of Biocompatible Aliphatic Polycarbonates on siRNA Transfection Ability
Frère, Antoine ULg; Kawalec, Michal; Tempelaar, Sarah et al

in Biomacromolecules (2015)

RNAi therapeutics are promising therapeutic tools that have sparked the interest of many researchers. In an effort to provide a safe alternative to PEI, we have designed a series of new guanidinium and/or ... [more ▼]

RNAi therapeutics are promising therapeutic tools that have sparked the interest of many researchers. In an effort to provide a safe alternative to PEI, we have designed a series of new guanidinium and/or morpholino functionalized biocompatible and biodegradable polycarbonate vectors. The impact of different functions (morpholino-, guanidinium-, hydrophobic groups), of the architecture (linear homopolymer to dumbbell-shape) and of the molecular weight of these copolymers on their capacity to form polyplexes and to decrease the expression of two epigenetic regulators of gene expression, HDAC7 and HDAC5 was evaluated. The use of one of these polymers combining morpholine and guanidine functions at the ratio >1 and hydrophobic trimethylene carbonate groups showed a significant decrease of mRNA and protein level in HeLa cells, similar to PEI. These results highlight the potential of polycarbonate vectors for future in vivo application as an anti-cancer therapy. [less ▲]

Detailed reference viewed: 56 (15 ULg)
See detailPolyplex based on polycarbonate polymers for an efficient delivery of HDAC5 and HDAC7 siRNA
Frère, Antoine ULg; Evrard, Brigitte ULg; Mespouille, Laetitia et al

Conference (2014, December 12)

Detailed reference viewed: 11 (3 ULg)
See detailHDAC5 Depletion in Cancer Cells Induces an Oxidative Stress and Leads to a Metabolic Reprogramming toward Glucose and Glutamine Metabolism
Hendrick, Elodie ULg; Peixoto, Paul ULg; Polese, Catherine ULg et al

Conference (2014, September 30)

Histone deacetylases (HDAC) is a family of eighteen enzymes, which modulates the acetylation level of histones and non-histone proteins to regulate gene expression and chromatin structure. Broad-spectrum ... [more ▼]

Histone deacetylases (HDAC) is a family of eighteen enzymes, which modulates the acetylation level of histones and non-histone proteins to regulate gene expression and chromatin structure. Broad-spectrum inhibitors of these enzymes such as SAHA can inhibit tumor growth both in vitro and in vivo and are currently used as anti-cancer agents in clinic. For many years, we are investigating the specific role of individual HDAC members in cancer biology and we have recently demonstrated that specific depletion of HDAC5 using siRNA technology reduced cancer cells proliferation and survival1 The goal of this study is to further understand the molecular mechanisms of action of HDAC5 in cancer cells. Screening transcriptomic study demonstrated that HDAC5 depletion induces a down-regulation of subunits of the complex I of the mitochondrial respiratory chain (NDUFB5-NDUFA3) as well as anti-oxydant proteins (Ferritin, Metalothionein,¿) through modulation of mRNA stability. Therefore, HDAC5 depletion causes a significant increase of ROS production inducing both apoptosis and mechanisms of mitochondria quality control (mitophagy and mitobiogenesis). This HDAC5 depletion-induced mitochondrial dysfunction provokes metabolic adaptation associated with increased importance of glycolysis and glucose. Indeed, interference with glucose supply in HDAC5-depleted cancer cells significantly increases apoptotic cell death suggesting that glucose deprivation might be combined to HDAC5 inhibition as a therapeutic strategy to kill cancer cells. Our study demonstrated for the first time that specific HDAC5 inhibition induces metabolic reprogramming and provides insight into a valuable experimental strategy for manipulation of specific HDAC5 inhibition and glucose metabolism in therapy against cancer. 1.Peixoto, P. et al. HDAC5 is required for maintenance of pericentric heterochromatin, and controls cell-cycle progression and survival of human cancer cells. Cell death and differentiation, 2012; 1-14. Presenting author e-mail: elodie.hendrick@student.ulg.ac.be [less ▲]

Detailed reference viewed: 16 (0 ULg)
See detailHDAC5 Depletion in Cancer Cells Induces an Oxidative Stress and Leads to a Metabolic Reprogramming toward Glucose and Glutamine Metabolism
Hendrick, Elodie ULg; Peixoto, Paul ULg; Polese, Catherine ULg et al

Poster (2014, September 25)

Histone deacetylases (HDAC) is a family of eighteen enzymes, which modulates the acetylation level of histones and non-histone proteins to regulate gene expression and chromatin structure. Broad-spectrum ... [more ▼]

Histone deacetylases (HDAC) is a family of eighteen enzymes, which modulates the acetylation level of histones and non-histone proteins to regulate gene expression and chromatin structure. Broad-spectrum inhibitors of these enzymes such as SAHA can inhibit tumor growth both in vitro and in vivo and are currently used as anti-cancer agents in clinic. For many years, we are investigating the specific role of individual HDAC members in cancer biology and we have recently demonstrated that specific depletion of HDAC5 using siRNA technology reduced cancer cells proliferation and survival1 The goal of this study is to further understand the molecular mechanisms of action of HDAC5 in cancer cells. Screening transcriptomic study demonstrated that HDAC5 depletion induces a down-regulation of subunits of the complex I of the mitochondrial respiratory chain (NDUFB5-NDUFA3) as well as anti-oxydant proteins (Ferritin, Metalothionein,¿) through modulation of mRNA stability. Therefore, HDAC5 depletion causes a significant increase of ROS production inducing both apoptosis and mechanisms of mitochondria quality control (mitophagy and mitobiogenesis). This HDAC5 depletion-induced mitochondrial dysfunction provokes metabolic adaptation associated with increased importance of glycolysis and glucose. Indeed, interference with glucose supply in HDAC5-depleted cancer cells significantly increases apoptotic cell death suggesting that glucose deprivation might be combined to HDAC5 inhibition as a therapeutic strategy to kill cancer cells. Our study demonstrated for the first time that specific HDAC5 inhibition induces metabolic reprogramming and provides insight into a valuable experimental strategy for manipulation of specific HDAC5 inhibition and glucose metabolism in therapy against cancer. 1.Peixoto, P. et al. HDAC5 is required for maintenance of pericentric heterochromatin, and controls cell-cycle progression and survival of human cancer cells. Cell death and differentiation, 2012; 1-14. Presenting author e-mail: elodie.hendrick@student.ulg.ac.be [less ▲]

Detailed reference viewed: 12 (0 ULg)
Full Text
See detailPolyplex based on polycarbonate polymesr for an efficient delivery of an anti-angiogenic siRNA
Frère, Antoine ULg; Tempelaar, Sarah; Peixoto, Paul ULg et al

Conference (2014, August 28)

Detailed reference viewed: 19 (7 ULg)
See detailImpact of the Structure of Biocompatible Aliphatic Polycarbonate on siRNA Transfection Ability
Frère, Antoine ULg; Kawalec, Michal; Tempelaar, Sarah et al

Poster (2014, May 26)

Detailed reference viewed: 49 (20 ULg)
See detailGlucose-dependent metabolic reprogramming in HDAC5-depleted cancer cells
Hendrick, Elodie ULg; Peixoto, Paul ULg; Polese, Catherine ULg et al

Poster (2014, May 19)

Histone deacetylases (HDAC) is a family of eighteen enzymes, which modulates the acetylation level of histones and non-histone proteins to regulate gene expression and chromatin structure. Broad-spectrum ... [more ▼]

Histone deacetylases (HDAC) is a family of eighteen enzymes, which modulates the acetylation level of histones and non-histone proteins to regulate gene expression and chromatin structure. Broad-spectrum inhibitors of these enzymes such as SAHA can inhibit tumor growth both in vitro and in vivo and are currently used as anti-cancer agents in clinic. For many years, we are investigating the specific role of individual HDAC members in cancer biology and we have recently demonstrated that specific depletion of HDAC5 using siRNA technology reduced cancer cells proliferation and survival1 The goal of this study is to further understand the molecular mechanisms of action of HDAC5 in cancer cells. Screening transcriptomic study demonstrated that HDAC5 depletion induces a down-regulation of subunits of the complex I of the mitochondrial respiratory chain (NDUFB5-NDUFA3) as well as anti-oxydant proteins (Ferritin, Metalothionein,¿) through modulation of mRNA stability. Therefore, HDAC5 depletion causes a significant increase of ROS production inducing both apoptosis and mechanisms of mitochondria quality control (mitophagy and mitobiogenesis). This HDAC5 depletion-induced mitochondrial dysfunction provokes metabolic adaptation associated with increased importance of glycolysis and glucose. Indeed, interference with glucose supply in HDAC5-depleted cancer cells significantly increases apoptotic cell death suggesting that glucose deprivation might be combined to HDAC5 inhibition as a therapeutic strategy to kill cancer cells. Our study demonstrated for the first time that specific HDAC5 inhibition induces metabolic reprogramming and provides insight into a valuable experimental strategy for manipulation of specific HDAC5 inhibition and glucose metabolism in therapy against cancer. 1.Peixoto, P. et al. HDAC5 is required for maintenance of pericentric heterochromatin, and controls cell-cycle progression and survival of human cancer cells. Cell death and differentiation, 2012; 1-14. Presenting author e-mail: elodie.hendrick@student.ulg.ac.be [less ▲]

Detailed reference viewed: 15 (0 ULg)
See detailGlucose-dependent metabolic reprogramming in HDAC5-depleted cancer cells
Hendrick, Elodie ULg; Peixoto, Paul ULg; Polese, Catherine ULg et al

Poster (2014, April 25)

Histone deacetylases (HDAC) is a family of eighteen enzymes, which modulates the acetylation level of histones and non-histone proteins to regulate gene expression and chromatin structure. Broad-spectrum ... [more ▼]

Histone deacetylases (HDAC) is a family of eighteen enzymes, which modulates the acetylation level of histones and non-histone proteins to regulate gene expression and chromatin structure. Broad-spectrum inhibitors of these enzymes such as SAHA can inhibit tumor growth both in vitro and in vivo and are currently used as anti-cancer agents in clinic. For many years, we are investigating the specific role of individual HDAC members in cancer biology and we have recently demonstrated that specific depletion of HDAC5 using siRNA technology reduced cancer cells proliferation and survival (PEIXOTO et al., 2012). The goal of this study is to further understand the molecular mechanisms of action of HDAC5 in cancer cells. Screening transcriptomic study demonstrated that HDAC5 depletion induces a down-regulation of subunits of the complex I of the mitochondrial respiratory chain (NDUFB5-NDUFA3) as well as anti-oxydant proteins (Ferritin, Metalothionein,¿) through modulation of mRNA stability. Therefore, HDAC5 depletion causes a significant increase of ROS production inducing both apoptosis and mechanisms of mitochondria quality control (mitophagy and mitobiogenesis). This HDAC5 depletion-induced mitochondrial dysfunction provokes metabolic adaptation associated with increased importance of glycolysis and glucose. Indeed, interference with glucose supply in HDAC5-depleted cancer cells significantly increases apoptotic cell death suggesting that glucose deprivation might be combined to HDAC5 inhibition as a therapeutic strategy to kill cancer cells. Our study demonstrated for the first time that specific HDAC5 inhibition induces metabolic reprogramming and provides insight into a valuable experimental strategy for manipulation of specific HDAC5 inhibition and glucose metabolism in therapy against cancer. Acknowledgements This work fiancially suppoted by a grant of F.R.S .-FNRS (contract n° 7.4515.12F). E Hendrick is recipient of a Televie fellowship. References PEIXOTO et al., (2012) Cell Death and Differentiation. 7:1239-52. [less ▲]

Detailed reference viewed: 8 (1 ULg)
See detailPolyplexes Targeting Angiogenesis in Cancer
Frère, Antoine ULg; Peixoto, Paul ULg; Kawalec, Michal et al

Poster (2014, April)

Detailed reference viewed: 22 (2 ULg)
See detailComplex I Mitochondrial Dysfunction in HDAC5-depleted Cancer Cells Induces Glucose-dependent Metabolic Reprogramming
Hendrick, Elodie ULg; Peixoto, Paul ULg; Polese, Catherine ULg et al

Poster (2014, February 01)

Introduction : Histone deacetylases (HDAC) is a family of eighteen enzymes, which modulates the acetylation level of histones and non-histone proteins to regulate gene expression and chromatin structure ... [more ▼]

Introduction : Histone deacetylases (HDAC) is a family of eighteen enzymes, which modulates the acetylation level of histones and non-histone proteins to regulate gene expression and chromatin structure. Broad-spectrum inhibitors of these enzymes such as SAHA can inhibit tumor growth both in vitro and in vivo and are currently used as anti-cancer agents in clinic. For many years, we are investigating the specific role of individual HDAC members in cancer biology and we have recently demonstrated that specific depletion of HDAC5 using siRNA technology reduced cancer cells proliferation and survival1. Aims : The goal of this study is to further understand the molecular mechanisms of action of HDAC5 in cancer cells. Methods and results : Screening transcriptomic study demonstrated that HDAC5 depletion induces a down-regulation of NDUFB5, a subunit of the complex I of the mitochondrial respiratory chain through modulation of mRNA stability. HDAC5 depletion-induced NDUFB5 downregulation causes a significant increase of ROS production and induces uncoupled mitochondrial respiration. In addition, this HDAC5 depletion-induced mitochondrial dysfunction provokes metabolic adaptation associated with increased importance of glucose. Indeed, interference with glucose supply in HDAC5-depleted cancer cells significantly increases apoptotic cell death suggesting that glucose deprivation might be combined to HDAC5 inhibition as a therapeutic strategy to kill cancer cells. Conclusions : Our study demonstrated for the first time that specific HDAC5 inhibition induces alteration of NDUFB5 gene expression by altering mRNA stability and provides insight into a valuable experimental strategy for manipulation of specific HDAC5 inhibition and glucose metabolism in therapy against cancer. 1.Peixoto, P. et al. HDAC5 is required for maintenance of pericentric heterochromatin, and controls cell-cycle progression and survival of human cancer cells. Cell death and differentiation, 2012; 1-14. [less ▲]

Detailed reference viewed: 15 (0 ULg)
See detailComplex I Mitochondrial Dysfunction in HDAC5-depleted Cancer Cells Induces Glucose-dependent Metabolic Reprogramming
Hendrick, Elodie ULg; Peixoto, Paul ULg; Matheus, Nicolas ULg et al

Poster (2014, January 27)

Introduction : Histone deacetylases (HDAC) is a family of eighteen enzymes, which modulates the acetylation level of histones and non-histone proteins to regulate gene expression and chromatin structure ... [more ▼]

Introduction : Histone deacetylases (HDAC) is a family of eighteen enzymes, which modulates the acetylation level of histones and non-histone proteins to regulate gene expression and chromatin structure. Broad-spectrum inhibitors of these enzymes such as SAHA can inhibit tumor growth both in vitro and in vivo and are currently used as anti-cancer agents in clinic. For many years, we are investigating the specific role of individual HDAC members in cancer biology and we have recently demonstrated that specific depletion of HDAC5 using siRNA technology reduced cancer cells proliferation and survival1. Aims : The goal of this study is to further understand the molecular mechanisms of action of HDAC5 in cancer cells. Methods and results : Screening transcriptomic study demonstrated that HDAC5 depletion induces a down-regulation of NDUFB5, a subunit of the complex I of the mitochondrial respiratory chain through modulation of mRNA stability. HDAC5 depletion-induced NDUFB5 downregulation causes a significant increase of ROS production and induces uncoupled mitochondrial respiration. In addition, this HDAC5 depletion-induced mitochondrial dysfunction provokes metabolic adaptation associated with increased importance of glucose. Indeed, interference with glucose supply in HDAC5-depleted cancer cells significantly increases apoptotic cell death suggesting that glucose deprivation might be combined to HDAC5 inhibition as a therapeutic strategy to kill cancer cells. Conclusions : Our study demonstrated for the first time that specific HDAC5 inhibition induces alteration of NDUFB5 gene expression by altering mRNA stability and provides insight into a valuable experimental strategy for manipulation of specific HDAC5 inhibition and glucose metabolism in therapy against cancer. 1.Peixoto, P. et al. HDAC5 is required for maintenance of pericentric heterochromatin, and controls cell-cycle progression and survival of human cancer cells. Cell death and differentiation, 2012; 1-14. [less ▲]

Detailed reference viewed: 8 (0 ULg)
Full Text
Peer Reviewed
See detailAn Easy, Convenient Cell and Tissue Extraction Protocol for Nuclear Magnetic Resonance Metabolomics.
Matheus, Nicolas ULg; Hansen, Sylvain ULg; Rozet, Eric ULg et al

in Phytochemical analysis : PCA (2014), 25

INTRODUCTION: As a complement to the classic metabolomics biofluid studies, the visualisation of the metabolites contained in cells or tissues could be a very powerful tool to understand how the local ... [more ▼]

INTRODUCTION: As a complement to the classic metabolomics biofluid studies, the visualisation of the metabolites contained in cells or tissues could be a very powerful tool to understand how the local metabolism and biochemical pathways could be affected by external or internal stimuli or pathologies. Therefore, extraction and/or lysis is necessary to obtain samples adapted for use with the current analytical tools (liquid NMR and MS). These extraction or lysis work-ups are often the most labour-intensive and rate-limiting steps in metabolomics, as they require accuracy and repeatability as well as robustness. Many of the procedures described in the literature appear to be very time-consuming and not easily amenable to automation. OBJECTIVE: To find a fast, simplified procedure that allows release of the metabolites from cells and tissues in a way that is compatible with NMR analysis. METHODS: We assessed the use of sonication to disrupt cell membranes or tissue structures. Both a vibrating probe and an automated bath sonicator were explored. RESULTS: The application of sonication as the disruption procedure led to reproducible NMR spectral data compatible with metabolomics studies. This method requires only a small biological tissue or cell sample, and a rapid, reduced work-up was applied before analysis. The spectral patterns obtained are comparable with previous, well-described extraction protocols. CONCLUSION: The rapidity and the simplicity of this approach could represent a suitable alternative to the other protocols. Additionally, this approach could be favourable for high- throughput applications in intracellular and intratissular metabolite measurements. Copyright (c) 2014 John Wiley & Sons, Ltd. [less ▲]

Detailed reference viewed: 78 (21 ULg)
Full Text
See detailPolyplex Based On Polycarbonate Polymers For An Efficient Delivery Of An Anti-Angiogenic siRNA
Frère, Antoine ULg; Kawalec, Michal; Tempelaar, Sarah et al

Poster (2014)

Detailed reference viewed: 11 (1 ULg)
See detailHDAC5 depletion Decreases NDUFB5 Subunit of Mitochondrial Complex- I leading to Glucose-dependent Metabolic Reprogrammation
Hendrick, Elodie ULg; Matheus, Nicolas ULg; Peixoto, Paul ULg et al

Poster (2013, December 05)

Introduction : Histone deacetylases (HDAC) is a family of eighteen enzymes, which modulates the acetylation level of histones and non-histone proteins to regulate gene expression and chromatin structure ... [more ▼]

Introduction : Histone deacetylases (HDAC) is a family of eighteen enzymes, which modulates the acetylation level of histones and non-histone proteins to regulate gene expression and chromatin structure. Broad-spectrum inhibitors of these enzymes such as SAHA can inhibit tumor growth both in vitro and in vivo and are currently used as anti-cancer agents in clinic. For many years, we are investigating the specific role of individual HDAC members in cancer biology and we have recently demonstrated that specific depletion of HDAC5 using siRNA technology reduced cancer cells proliferation and survival1. Aims : The goal of this study is to further understand the molecular mechanisms of action of HDAC5 in cancer cells. Methods and results : Screening transcriptomic study demonstrated that HDAC5 depletion induces a down-regulation of NDUFB5, a subunit of the complex I of the mitochondrial respiratory chain through modulation of mRNA stability. HDAC5 depletion-induced NDUFB5 downregulation causes a significant increase of ROS production and induces uncoupled mitochondrial respiration. In addition, this HDAC5 depletion-induced mitochondrial dysfunction provokes metabolic adaptation associated with increased importance of glucose. Indeed, interference with glucose supply in HDAC5-depleted cancer cells significantly increases apoptotic cell death suggesting that glucose deprivation might be combined to HDAC5 inhibition as a therapeutic strategy to kill cancer cells. Conclusions : Our study demonstrated for the first time that specific HDAC5 inhibition induces alteration of NDUFB5 gene expression by altering mRNA stability and provides insight into a valuable experimental strategy for manipulation of specific HDAC5 inhibition and glucose metabolism in therapy against cancer. 1.Peixoto, P. et al. HDAC5 is required for maintenance of pericentric heterochromatin, and controls cell-cycle progression and survival of human cancer cells. Cell death and differentiation, 2012; 1-14. [less ▲]

Detailed reference viewed: 6 (0 ULg)
See detailThe intracellular fate of polycarbonate Polyplexes modulates the efficacy of siRNA
Frère, Antoine ULg; Kawalec, Michal; Peixoto, Paul ULg et al

Poster (2013, December)

Detailed reference viewed: 17 (1 ULg)