References of "Mottet, Denis"
     in
Bookmark and Share    
Peer Reviewed
See detailPolymeric Nanoparticles as siRNA Drug Delivery System for Cancer Therapy: The Long Road to Therapeutic Efficiency
Frère, Antoine ULg; Evrard, Brigitte ULg; Mottet, Denis ULg et al

in Holban, Alina Maria; Grumezescu, Alexandru (Eds.) Nanoarchitectonics for Smart Delivery and Drug Targeting (2016)

Polyplexes are nanoparticles composed of small-interfering RNA (siRNA) and natural or synthetic polymers. To meet the challenge of gene therapy and deliver siRNA into the cytoplasm of target cells ... [more ▼]

Polyplexes are nanoparticles composed of small-interfering RNA (siRNA) and natural or synthetic polymers. To meet the challenge of gene therapy and deliver siRNA into the cytoplasm of target cells, several barriers must be overcome. In this chapter, the main steps, from the formulation of polyplexes to the efficient release of the siRNA into the cytoplasm of cancer cells, are described, taking into account the different strategies used to overcome the obstacles linked to the formulation of this type of nanovector. To allow a parenteral administration of the nanocolloids, the polyplex production methods should result in identical, stable, and reproducible nanostructures. Charge interactions occur between the anionic siRNA and the cationic/amphiphilic polymer. Once in the blood circulation, polyplexes must keep their physical stability. The positively charged surface can cause aggregation of the nanoparticles with plasma proteins, as well as complement activation and recognition by the mononuclear phagocytic system, with a consequent reduction of their pharmacological activity. Polyethylene glycol (PEG) can be added on the surface of the nanovectors to confer “the stealth” properties and increase plasma half-life. Then, particles have to preferentially accumulate in the tumor tissue following an active or passive targeting. Endocytosis process enables the polyplex cellular uptake, but some strategies like “the proton sponge effect” have to be used to allow the escape of the nanovectors from the cellular endosomes. Once released into the cytoplasm, polymer and siRNA must dissociate for an effective degradation of the targeted mRNA, leading finally to a decrease of the corresponding protein. [less ▲]

Detailed reference viewed: 65 (8 ULg)
Full Text
Peer Reviewed
See detailGuidelines for the use and interpretation of assays for monitoring autophagy (3rd edition).
Klionsky, Daniel J.; Abdelmohsen, Kotb; Abe, Akihisa et al

in Autophagy (2016), 12(1), 1-222

Detailed reference viewed: 137 (23 ULg)
See detailCompensatory Metabolism Promotes Cancer Cell Adaptation to HDAC5 Silencing
Hendrick, Elodie ULg; Peixoto, Paul; Polese, Catherine et al

Poster (2015, December 03)

Detailed reference viewed: 23 (8 ULg)
See detailPegylated Polyplexes Based On HDAC5 siRNA And Aliphatic Polycarbonate Polymers For An Anticancer Therapy
Frère, Antoine ULg; Baroni, Alexandra; Peulen, Olivier ULg et al

Poster (2015, November 23)

Detailed reference viewed: 17 (10 ULg)
See detailPolyplex Based on Polycarbonate Polymers for an Efficient Delivery of HDAC5 and HDAC7 siRNA
Frère, Antoine ULg; Tempelaar, Sarah; Peulen, Olivier ULg et al

Poster (2015, June 02)

Detailed reference viewed: 17 (5 ULg)
See detailHDAC5 Depletion in Cancer Cells Induces an Oxidative Stress and Leads to a Metabolic Reprogramming toward Glucose and Glutamine Metabolism
Hendrick, Elodie ULg; Peixoto, Paul ULg; Polese, Catherine ULg et al

Poster (2015, February 11)

Histone deacetylases (HDAC) is a family of eighteen enzymes, which modulates the acetylation level of histones and non-histone proteins to regulate gene expression and chromatin structure. Broad-spectrum ... [more ▼]

Histone deacetylases (HDAC) is a family of eighteen enzymes, which modulates the acetylation level of histones and non-histone proteins to regulate gene expression and chromatin structure. Broad-spectrum inhibitors of these enzymes such as SAHA can inhibit tumor growth both in vitro and in vivo and are currently used as anti-cancer agents in clinic. For many years, we are investigating the specific role of individual HDAC members in cancer biology and we have recently demonstrated that specific depletion of HDAC5 using siRNA technology reduced cancer cells proliferation and survival1 The goal of this study is to further understand the molecular mechanisms of action of HDAC5 in cancer cells. Screening transcriptomic study demonstrated that HDAC5 depletion induces a down-regulation of subunits of the complex I of the mitochondrial respiratory chain (NDUFB5-NDUFA3) as well as anti-oxydant proteins (Ferritin, Metalothionein,¿) through modulation of mRNA stability. Therefore, HDAC5 depletion causes a significant increase of ROS production inducing both apoptosis and mechanisms of mitochondria quality control (mitophagy and mitobiogenesis). This HDAC5 depletion-induced mitochondrial dysfunction provokes metabolic adaptation associated with increased importance of glucose and glutamine. Indeed, interference with both glucose and glutamine supply in HDAC5-depleted cancer cells significantly increases apoptotic cell death suggesting that glucose or glutamine deprivation might be combined to HDAC5 inhibition as a therapeutic strategy to kill cancer cells. Our study demonstrated for the first time that specific HDAC5 inhibition induces metabolic reprogramming and provides insight into a valuable experimental strategy for manipulation of specific HDAC5 inhibition and glucose metabolism in therapy against cancer. 1.Peixoto, P. et al. HDAC5 is required for maintenance of pericentric heterochromatin, and controls cell-cycle progression and survival of human cancer cells. Cell death and differentiation, 2012; 1-14. Presenting author e-mail: elodie.hendrick@student.ulg.ac.be [less ▲]

Detailed reference viewed: 32 (9 ULg)
See detailHDAC5 Depletion in Cancer Cells Induces an Oxidative Stress and Leads to a Metabolic Reprogramming toward Glucose and Glutamine Metabolism
Hendrick, Elodie ULg; Peixoto, Paul ULg; Polese, Catherine ULg et al

Poster (2015, January 31)

Histone deacetylases (HDAC) is a family of eighteen enzymes, which modulates the acetylation level of histones and non-histone proteins to regulate gene expression and chromatin structure. Broad-spectrum ... [more ▼]

Histone deacetylases (HDAC) is a family of eighteen enzymes, which modulates the acetylation level of histones and non-histone proteins to regulate gene expression and chromatin structure. Broad-spectrum inhibitors of these enzymes such as SAHA can inhibit tumor growth both in vitro and in vivo and are currently used as anti-cancer agents in clinic. For many years, we are investigating the specific role of individual HDAC members in cancer biology and we have recently demonstrated that specific depletion of HDAC5 using siRNA technology reduced cancer cells proliferation and survival1 The goal of this study is to further understand the molecular mechanisms of action of HDAC5 in cancer cells. Screening transcriptomic study demonstrated that HDAC5 depletion induces a down-regulation of subunits of the complex I of the mitochondrial respiratory chain (NDUFB5-NDUFA3) as well as anti-oxydant proteins (Ferritin, Metalothionein,¿) through modulation of mRNA stability. Therefore, HDAC5 depletion causes a significant increase of ROS production inducing both apoptosis and mechanisms of mitochondria quality control (mitophagy and mitobiogenesis). This HDAC5 depletion-induced mitochondrial dysfunction provokes metabolic adaptation associated with increased importance of glucose and glutamine. Indeed, interference with both glucose and glutamine supply in HDAC5-depleted cancer cells significantly increases apoptotic cell death suggesting that glucose or glutamine deprivation might be combined to HDAC5 inhibition as a therapeutic strategy to kill cancer cells. Our study demonstrated for the first time that specific HDAC5 inhibition induces metabolic reprogramming and provides insight into a valuable experimental strategy for manipulation of specific HDAC5 inhibition and glucose metabolism in therapy against cancer. 1.Peixoto, P. et al. HDAC5 is required for maintenance of pericentric heterochromatin, and controls cell-cycle progression and survival of human cancer cells. Cell death and differentiation, 2012; 1-14. Presenting author e-mail: elodie.hendrick@student.ulg.ac.be [less ▲]

Detailed reference viewed: 28 (2 ULg)
See detailHDAC5 Depletion in Cancer Cells Induces an Oxidative Stress and Leads to a Metabolic Reprogramming toward Glucose and Glutamine Metabolism
Hendrick, Elodie ULg; Peixoto, Paul ULg; Polese, Catherine ULg et al

Poster (2015, January 27)

Histone deacetylases (HDAC) is a family of eighteen enzymes, which modulates the acetylation level of histones and non-histone proteins to regulate gene expression and chromatin structure. Broad-spectrum ... [more ▼]

Histone deacetylases (HDAC) is a family of eighteen enzymes, which modulates the acetylation level of histones and non-histone proteins to regulate gene expression and chromatin structure. Broad-spectrum inhibitors of these enzymes such as SAHA can inhibit tumor growth both in vitro and in vivo and are currently used as anti-cancer agents in clinic. For many years, we are investigating the specific role of individual HDAC members in cancer biology and we have recently demonstrated that specific depletion of HDAC5 using siRNA technology reduced cancer cells proliferation and survival1 The goal of this study is to further understand the molecular mechanisms of action of HDAC5 in cancer cells. Screening transcriptomic study demonstrated that HDAC5 depletion induces a down-regulation of subunits of the complex I of the mitochondrial respiratory chain (NDUFB5-NDUFA3) as well as anti-oxydant proteins (Ferritin, Metalothionein,¿) through modulation of mRNA stability. Therefore, HDAC5 depletion causes a significant increase of ROS production inducing both apoptosis and mechanisms of mitochondria quality control (mitophagy and mitobiogenesis). This HDAC5 depletion-induced mitochondrial dysfunction provokes metabolic adaptation associated with increased importance of glucose and glutamine. Indeed, interference with both glucose and glutamine supply in HDAC5-depleted cancer cells significantly increases apoptotic cell death suggesting that glucose or glutamine deprivation might be combined to HDAC5 inhibition as a therapeutic strategy to kill cancer cells. Our study demonstrated for the first time that specific HDAC5 inhibition induces metabolic reprogramming and provides insight into a valuable experimental strategy for manipulation of specific HDAC5 inhibition and glucose metabolism in therapy against cancer. 1.Peixoto, P. et al. HDAC5 is required for maintenance of pericentric heterochromatin, and controls cell-cycle progression and survival of human cancer cells. Cell death and differentiation, 2012; 1-14. Presenting author e-mail: elodie.hendrick@student.ulg.ac.be [less ▲]

Detailed reference viewed: 15 (3 ULg)
Full Text
Peer Reviewed
See detailImpact of the Structure of Biocompatible Aliphatic Polycarbonates on siRNA Transfection Ability
Frère, Antoine ULg; Kawalec, Michal; Tempelaar, Sarah et al

in Biomacromolecules (2015)

RNAi therapeutics are promising therapeutic tools that have sparked the interest of many researchers. In an effort to provide a safe alternative to PEI, we have designed a series of new guanidinium and/or ... [more ▼]

RNAi therapeutics are promising therapeutic tools that have sparked the interest of many researchers. In an effort to provide a safe alternative to PEI, we have designed a series of new guanidinium and/or morpholino functionalized biocompatible and biodegradable polycarbonate vectors. The impact of different functions (morpholino-, guanidinium-, hydrophobic groups), of the architecture (linear homopolymer to dumbbell-shape) and of the molecular weight of these copolymers on their capacity to form polyplexes and to decrease the expression of two epigenetic regulators of gene expression, HDAC7 and HDAC5 was evaluated. The use of one of these polymers combining morpholine and guanidine functions at the ratio >1 and hydrophobic trimethylene carbonate groups showed a significant decrease of mRNA and protein level in HeLa cells, similar to PEI. These results highlight the potential of polycarbonate vectors for future in vivo application as an anti-cancer therapy. [less ▲]

Detailed reference viewed: 96 (27 ULg)
See detailPolyplex based on polycarbonate polymers for an efficient delivery of HDAC5 and HDAC7 siRNA
Frère, Antoine ULg; Evrard, Brigitte ULg; Mespouille, Laetitia et al

Conference (2014, December 12)

Detailed reference viewed: 15 (5 ULg)
See detailHDAC5 Depletion in Cancer Cells Induces an Oxidative Stress and Leads to a Metabolic Reprogramming toward Glucose and Glutamine Metabolism
Hendrick, Elodie ULg; Peixoto, Paul ULg; Polese, Catherine ULg et al

Conference (2014, September 30)

Histone deacetylases (HDAC) is a family of eighteen enzymes, which modulates the acetylation level of histones and non-histone proteins to regulate gene expression and chromatin structure. Broad-spectrum ... [more ▼]

Histone deacetylases (HDAC) is a family of eighteen enzymes, which modulates the acetylation level of histones and non-histone proteins to regulate gene expression and chromatin structure. Broad-spectrum inhibitors of these enzymes such as SAHA can inhibit tumor growth both in vitro and in vivo and are currently used as anti-cancer agents in clinic. For many years, we are investigating the specific role of individual HDAC members in cancer biology and we have recently demonstrated that specific depletion of HDAC5 using siRNA technology reduced cancer cells proliferation and survival1 The goal of this study is to further understand the molecular mechanisms of action of HDAC5 in cancer cells. Screening transcriptomic study demonstrated that HDAC5 depletion induces a down-regulation of subunits of the complex I of the mitochondrial respiratory chain (NDUFB5-NDUFA3) as well as anti-oxydant proteins (Ferritin, Metalothionein,¿) through modulation of mRNA stability. Therefore, HDAC5 depletion causes a significant increase of ROS production inducing both apoptosis and mechanisms of mitochondria quality control (mitophagy and mitobiogenesis). This HDAC5 depletion-induced mitochondrial dysfunction provokes metabolic adaptation associated with increased importance of glycolysis and glucose. Indeed, interference with glucose supply in HDAC5-depleted cancer cells significantly increases apoptotic cell death suggesting that glucose deprivation might be combined to HDAC5 inhibition as a therapeutic strategy to kill cancer cells. Our study demonstrated for the first time that specific HDAC5 inhibition induces metabolic reprogramming and provides insight into a valuable experimental strategy for manipulation of specific HDAC5 inhibition and glucose metabolism in therapy against cancer. 1.Peixoto, P. et al. HDAC5 is required for maintenance of pericentric heterochromatin, and controls cell-cycle progression and survival of human cancer cells. Cell death and differentiation, 2012; 1-14. Presenting author e-mail: elodie.hendrick@student.ulg.ac.be [less ▲]

Detailed reference viewed: 16 (0 ULg)
See detailHDAC5 Depletion in Cancer Cells Induces an Oxidative Stress and Leads to a Metabolic Reprogramming toward Glucose and Glutamine Metabolism
Hendrick, Elodie ULg; Peixoto, Paul ULg; Polese, Catherine ULg et al

Poster (2014, September 25)

Histone deacetylases (HDAC) is a family of eighteen enzymes, which modulates the acetylation level of histones and non-histone proteins to regulate gene expression and chromatin structure. Broad-spectrum ... [more ▼]

Histone deacetylases (HDAC) is a family of eighteen enzymes, which modulates the acetylation level of histones and non-histone proteins to regulate gene expression and chromatin structure. Broad-spectrum inhibitors of these enzymes such as SAHA can inhibit tumor growth both in vitro and in vivo and are currently used as anti-cancer agents in clinic. For many years, we are investigating the specific role of individual HDAC members in cancer biology and we have recently demonstrated that specific depletion of HDAC5 using siRNA technology reduced cancer cells proliferation and survival1 The goal of this study is to further understand the molecular mechanisms of action of HDAC5 in cancer cells. Screening transcriptomic study demonstrated that HDAC5 depletion induces a down-regulation of subunits of the complex I of the mitochondrial respiratory chain (NDUFB5-NDUFA3) as well as anti-oxydant proteins (Ferritin, Metalothionein,¿) through modulation of mRNA stability. Therefore, HDAC5 depletion causes a significant increase of ROS production inducing both apoptosis and mechanisms of mitochondria quality control (mitophagy and mitobiogenesis). This HDAC5 depletion-induced mitochondrial dysfunction provokes metabolic adaptation associated with increased importance of glycolysis and glucose. Indeed, interference with glucose supply in HDAC5-depleted cancer cells significantly increases apoptotic cell death suggesting that glucose deprivation might be combined to HDAC5 inhibition as a therapeutic strategy to kill cancer cells. Our study demonstrated for the first time that specific HDAC5 inhibition induces metabolic reprogramming and provides insight into a valuable experimental strategy for manipulation of specific HDAC5 inhibition and glucose metabolism in therapy against cancer. 1.Peixoto, P. et al. HDAC5 is required for maintenance of pericentric heterochromatin, and controls cell-cycle progression and survival of human cancer cells. Cell death and differentiation, 2012; 1-14. Presenting author e-mail: elodie.hendrick@student.ulg.ac.be [less ▲]

Detailed reference viewed: 21 (0 ULg)
Full Text
Peer Reviewed
See detailInhiber HDAC5 : un outil pour couper court à l’immortalité des cellules cancéreuses
Polese, Catherine; Mottet, Denis ULg

in Medecine Sciences : M/S (2014), 30(numero 8-9), 730-732

Detailed reference viewed: 17 (3 ULg)
Full Text
See detailPolyplex based on polycarbonate polymesr for an efficient delivery of an anti-angiogenic siRNA
Frère, Antoine ULg; Tempelaar, Sarah; Peixoto, Paul ULg et al

Conference (2014, August 28)

Detailed reference viewed: 28 (12 ULg)
See detailImpact of the Structure of Biocompatible Aliphatic Polycarbonate on siRNA Transfection Ability
Frère, Antoine ULg; Kawalec, Michal; Tempelaar, Sarah et al

Poster (2014, May 26)

Detailed reference viewed: 53 (22 ULg)
See detailGlucose-dependent metabolic reprogramming in HDAC5-depleted cancer cells
Hendrick, Elodie ULg; Peixoto, Paul ULg; Polese, Catherine ULg et al

Poster (2014, May 19)

Histone deacetylases (HDAC) is a family of eighteen enzymes, which modulates the acetylation level of histones and non-histone proteins to regulate gene expression and chromatin structure. Broad-spectrum ... [more ▼]

Histone deacetylases (HDAC) is a family of eighteen enzymes, which modulates the acetylation level of histones and non-histone proteins to regulate gene expression and chromatin structure. Broad-spectrum inhibitors of these enzymes such as SAHA can inhibit tumor growth both in vitro and in vivo and are currently used as anti-cancer agents in clinic. For many years, we are investigating the specific role of individual HDAC members in cancer biology and we have recently demonstrated that specific depletion of HDAC5 using siRNA technology reduced cancer cells proliferation and survival1 The goal of this study is to further understand the molecular mechanisms of action of HDAC5 in cancer cells. Screening transcriptomic study demonstrated that HDAC5 depletion induces a down-regulation of subunits of the complex I of the mitochondrial respiratory chain (NDUFB5-NDUFA3) as well as anti-oxydant proteins (Ferritin, Metalothionein,¿) through modulation of mRNA stability. Therefore, HDAC5 depletion causes a significant increase of ROS production inducing both apoptosis and mechanisms of mitochondria quality control (mitophagy and mitobiogenesis). This HDAC5 depletion-induced mitochondrial dysfunction provokes metabolic adaptation associated with increased importance of glycolysis and glucose. Indeed, interference with glucose supply in HDAC5-depleted cancer cells significantly increases apoptotic cell death suggesting that glucose deprivation might be combined to HDAC5 inhibition as a therapeutic strategy to kill cancer cells. Our study demonstrated for the first time that specific HDAC5 inhibition induces metabolic reprogramming and provides insight into a valuable experimental strategy for manipulation of specific HDAC5 inhibition and glucose metabolism in therapy against cancer. 1.Peixoto, P. et al. HDAC5 is required for maintenance of pericentric heterochromatin, and controls cell-cycle progression and survival of human cancer cells. Cell death and differentiation, 2012; 1-14. Presenting author e-mail: elodie.hendrick@student.ulg.ac.be [less ▲]

Detailed reference viewed: 25 (0 ULg)
See detailGlucose-dependent metabolic reprogramming in HDAC5-depleted cancer cells
Hendrick, Elodie ULg; Peixoto, Paul ULg; Polese, Catherine ULg et al

Poster (2014, April 25)

Histone deacetylases (HDAC) is a family of eighteen enzymes, which modulates the acetylation level of histones and non-histone proteins to regulate gene expression and chromatin structure. Broad-spectrum ... [more ▼]

Histone deacetylases (HDAC) is a family of eighteen enzymes, which modulates the acetylation level of histones and non-histone proteins to regulate gene expression and chromatin structure. Broad-spectrum inhibitors of these enzymes such as SAHA can inhibit tumor growth both in vitro and in vivo and are currently used as anti-cancer agents in clinic. For many years, we are investigating the specific role of individual HDAC members in cancer biology and we have recently demonstrated that specific depletion of HDAC5 using siRNA technology reduced cancer cells proliferation and survival (PEIXOTO et al., 2012). The goal of this study is to further understand the molecular mechanisms of action of HDAC5 in cancer cells. Screening transcriptomic study demonstrated that HDAC5 depletion induces a down-regulation of subunits of the complex I of the mitochondrial respiratory chain (NDUFB5-NDUFA3) as well as anti-oxydant proteins (Ferritin, Metalothionein,¿) through modulation of mRNA stability. Therefore, HDAC5 depletion causes a significant increase of ROS production inducing both apoptosis and mechanisms of mitochondria quality control (mitophagy and mitobiogenesis). This HDAC5 depletion-induced mitochondrial dysfunction provokes metabolic adaptation associated with increased importance of glycolysis and glucose. Indeed, interference with glucose supply in HDAC5-depleted cancer cells significantly increases apoptotic cell death suggesting that glucose deprivation might be combined to HDAC5 inhibition as a therapeutic strategy to kill cancer cells. Our study demonstrated for the first time that specific HDAC5 inhibition induces metabolic reprogramming and provides insight into a valuable experimental strategy for manipulation of specific HDAC5 inhibition and glucose metabolism in therapy against cancer. Acknowledgements This work fiancially suppoted by a grant of F.R.S .-FNRS (contract n° 7.4515.12F). E Hendrick is recipient of a Televie fellowship. References PEIXOTO et al., (2012) Cell Death and Differentiation. 7:1239-52. [less ▲]

Detailed reference viewed: 10 (1 ULg)