References of "Moreau, Yves"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailImproved detection of chromosomal abnormalities in chronic lymphocytic leukemia by conventional cytogenetics using CpG oligonucleotide and interleukin-2 stimulation: A Belgian multicentric study.
Put, Natalie; Konings, Peter; Rack, Katrina et al

in Genes, Chromosomes & Cancer (2009), 48(10), 843-53

We performed a multicentric study to assess the impact of two different culture procedures on the detection of chromosomal abnormalities in 217 consecutive unselected cases with chronic lymphocytic ... [more ▼]

We performed a multicentric study to assess the impact of two different culture procedures on the detection of chromosomal abnormalities in 217 consecutive unselected cases with chronic lymphocytic leukemia (CLL) referred for routine analysis either at the time of diagnosis (n = 172) or during disease evolution (n = 45). Parallel cultures of peripheral blood or bone marrow were set up with the addition of either the conventional B-cell mitogen 12-O-tetradecanoyl-phorbol-13-acetate (TPA) or a combination of CpG oligonucleotide (CpG) and interleukin-2 (IL-2). Cytogenetic analyses were performed on both cultures. Clonal abnormalities were identified in 116 cases (53%). In 78 cases (36%), the aberrant clone was detected in both cultures. Among these, the percentages of aberrant metaphases were similar in both conditions in 17 cases, higher in the CpG/IL-2 culture in 43 cases, and higher in the TPA culture in 18 cases. Clonal aberrations were detected in only one culture, either in CpG/IL-2 or TPA in 33 (15%) and 5 (2%) cases, respectively. Taken together, abnormal karyotypes were observed in 51% with CpG/IL-2 and 38% with TPA (P < 0.0001). Application of FISH (n = 201) allowed the detection of abnormalities not visible by conventional cytogenetic analysis in 80 cases: del(13q) (n = 71), del(11q) (n = 5), +12 (n = 2), del(14q) (n = 1), and del(17p) (n = 1). In conclusion, our results confirm that CpG/IL-2 stimulation increases the detection rate of chromosomal abnormalities in CLL compared with TPA and that further improvement can be obtained by FISH. However, neither conventional cytogenetics nor FISH detected all aberrations, demonstrating the complementary nature of these techniques. [less ▲]

Detailed reference viewed: 95 (6 ULg)
Full Text
Peer Reviewed
See detailGENESTAT: an information portal for design and analysis of genetic association studies
Ripatti, Samuli; Becker, Tim; Bickeboller, Heike et al

in European Journal of Human Genetics (2009), 17(4), 533-6

We present the rationale, the background and the structure for version 2.0 of the GENESTAT information portal (www.genestat.org) for statistical genetics. The fast methodological advances, coupled with a ... [more ▼]

We present the rationale, the background and the structure for version 2.0 of the GENESTAT information portal (www.genestat.org) for statistical genetics. The fast methodological advances, coupled with a range of standalone software, makes it difficult for expert as well as non-expert users to orientate when designing and analysing their genetic studies. The ultimate ambition of GENESTAT is to guide on statistical methodology related to the broad spectrum of research in genetic epidemiology. GENESTAT 2.0 focuses on genetic association studies. Each entry provides a summary of a topic and gives links to key papers, websites and software. The flexibility of the internet is utilised for cross-referencing and for open editing. This paper gives an overview of GENESTAT and gives short introductions to the current main topics in GENESTAT, with additional entries on the website. Methods and software developers are invited to contribute to the portal, which is powered by a Wikipedia-type engine and allows easy additions and editing. [less ▲]

Detailed reference viewed: 11 (2 ULg)
Full Text
Peer Reviewed
See detailMicroarray screening for target genes of the proto-oncogene PLAG1.
Voz, Marianne ULg; Mathys, Janick; Hensen, Karen et al

in Oncogene (2004), 23(1), 179-91

PLAG1 is a proto-oncogene whose ectopic expression can trigger the development of pleomorphic adenomas of the salivary glands and of lipoblastomas. As PLAG1 is a transcription factor, able to activate ... [more ▼]

PLAG1 is a proto-oncogene whose ectopic expression can trigger the development of pleomorphic adenomas of the salivary glands and of lipoblastomas. As PLAG1 is a transcription factor, able to activate transcription through the binding to the consensus sequence GRGGC(N)(6-8)GGG, its ectopic expression presumably results in the deregulation of target genes, leading to uncontrolled cell proliferation. The identification of PLAG1 target genes is therefore a crucial step in understanding the molecular mechanisms involved in PLAG1-induced tumorigenesis. To this end, we analysed the changes in gene expression caused by the conditional induction of PLAG1 expression in fetal kidney 293 cell lines. Using oligonucleotide microarray analyses of about 12 000 genes, we consistently identified 47 genes induced and 12 genes repressed by PLAG1. One of the largest classes identified as upregulated PLAG1 targets consists of growth factors such as the insulin-like growth factor II and the cytokine-like factor 1. The in silico search for PLAG1 consensus sequences in the promoter of the upregulated genes reveals that a large proportion of them harbor several copies of the PLAG1-binding motif, suggesting that they represent direct PLAG1 targets. Our approach was complemented by the comparison of the expression profiles of pleomorphic adenomas induced by PLAG1 versus normal salivary glands. Concordance between these two sets of experiments pinpointed 12 genes that were significantly and consistently upregulated in pleomorphic adenomas and in PLAG1-expressing cells, identifying them as putative PLAG1 targets in these tumors. [less ▲]

Detailed reference viewed: 18 (2 ULg)