References of "Montrieux, Henri-Michel"
     in
Bookmark and Share    
Full Text
See detailFriction Stir Processing of Magnesium Matrix Composites Reinforced with Carbon Fibres or Carbon Nanotubes - A Comparative Study
Mertens, Anne ULg; Simar, Aude; Garray, Didier et al

Conference (2013, December 05)

The poor wettability of carbon substrates by liquid Mg and, in the case of carbon nanotubes (CNTs), their strong tendency to agglomerate, are major obstacles to the large-scale production of C-Mg ... [more ▼]

The poor wettability of carbon substrates by liquid Mg and, in the case of carbon nanotubes (CNTs), their strong tendency to agglomerate, are major obstacles to the large-scale production of C-Mg composites by classical ‘liquid-state’ processing routes such as squeeze casting. As an innovative ‘solid state’ process, Friction Stir Processing (FSP) hence appeared as a very promising alternative for the production of C-Mg composites, although the method for inserting the reinforcing phase - in grooves or holes machined in the matrix material - remained time-consuming and labour-intensive. More recently, the present authors proposed a new and easier technique for the insertion of C fibres in FSPed Mg-matrix composites i.e. FSP of a C fabric stacked between two metal sheets. In the current work, the feasibility of extending this latter method to the production of CNTs-Mg composites has been assessed. “Bucky papers” – thin disks made from agglomerated CNTs, thus ensuring for their safe handling – were stacked between two sheets of Mg alloy AZ31B, and the resulting sandwich was FSPed. The effect of FSP experimental parameters such as the rotational and advancing speeds or the number of passes on the microstructural changes occuring upon processing has been studied and compared with the case of C fibres-Mg composites. Moreover, a particular attention has been given to the distribution of the reinforcements in the Mg matrix and to the characterization of the resulting mechanical properties. [less ▲]

Detailed reference viewed: 49 (4 ULg)
Full Text
See detailLes matrices métalliques et céramiques : de nouveaux matériaux composites
Montrieux, Henri-Michel ULg; Lecomte-Beckers, Jacqueline ULg; Mertens, Anne ULg

in Plus Composites (2013), article n°3

Le présent article décrit différentes limitations des matériaux composites à matrice polymère. Outre l’amélioration de la formulation des résines, une des alternatives qui se présente est d’employer une ... [more ▼]

Le présent article décrit différentes limitations des matériaux composites à matrice polymère. Outre l’amélioration de la formulation des résines, une des alternatives qui se présente est d’employer une matrice métallique ou céramique. Certains de ces matériaux nouveaux sont toujours au stade du développement. Il s’agit par exemple des composites pour applications structurales avec une matrice légère en aluminium ou en magnésium pour lesquels les rapports rigidité-poids et résistance-poids sont élevés. La résilience est aussi améliorée par rapport aux matrices classiques simplement renforcées. D’autres composites à matrice métallique tels que les cermets sont industrialisés comme outils de coupe. Des composites à matrice céramique comme le carbone-carbone ou le carbone-SiC peuvent être industrialisés et présentent une durabilité et une température d’utilisation maximale exceptionnelle. Pour terminer, l’article fournit quelques informations sur les techniques nouvelles de mise à forme des matériaux composites telles que le friction stir processing et l’additive manufacturing. [less ▲]

Detailed reference viewed: 39 (4 ULg)
Full Text
See detailMicrostructure and Thermomechanical Behaviour of Magnesium – C nanotubes Composites produced by Friction Stir Processing
Mertens, Anne ULg; Simar, Aude; Garray, Didier et al

Conference (2013, September 09)

Due to their exceptional mechanical and thermal characteristics, C nanotubes (CNTs) are attracting an ever increasing interest in view of tailoring the properties of metal matrix composites (MMCs) e.g ... [more ▼]

Due to their exceptional mechanical and thermal characteristics, C nanotubes (CNTs) are attracting an ever increasing interest in view of tailoring the properties of metal matrix composites (MMCs) e.g. for applications at high service temperature or in thermal management… However, the poor wettability of CNTs by molten metals and their strong tendency to agglomerate are major obstacles to the large-scale production of CNTs-MMCs by classical ‘liquid-state’ processing routes such as squeeze casting. As an innovative ‘solid state’ process, Friction Stir Processing (FSP) hence appears as a very promising alternative for the production of CNTs-MMCs [1], although the method for inserting the reinforcing phase - in grooves or holes machined in the matrix material - remains time-consuming and labour-intensive. More recently, Mertens et al. [2] proposed a new and easier technique for the insertion of C fibres in FSPed Mg-matrix composites i.e. FSP of a C fabric stacked between two metal sheets. In the present work, the feasibility of extending this latter method to the production of CNTs-MMCs has been assessed. “Bucky papers” – made from agglomerated CNTs, thus ensuring for their safe handling – were stacked between two sheets of Mg alloy AZ31B, and the resulting sandwich was FSPed. The effect of FSP experimental parameters such as the rotational and advancing speeds, and the number of FSP passes, on the microstructure of the composites and particularly on the distribution of the CNTs in the Mg matrix has been carefully studied. Moreover, a particular attention has been given to the characterization of the thermomechanical behaviour of the FSPed AZ31B-CNTs composites. [less ▲]

Detailed reference viewed: 31 (2 ULg)
Full Text
Peer Reviewed
See detailComparison between optical pulsed thermography and vibrothermography for the assessment of carbon fibers composite materials
Montrieux, Henri-Michel ULg; Demy, Philippe; Ibarra-Castanedo, Clemente et al

(2013, August 02)

Pulsed thermography and vibrothermography are two active thermography techniques characterized by different heating methods of the specimen. In pulsed phase thermography, a sample is heated by two flash ... [more ▼]

Pulsed thermography and vibrothermography are two active thermography techniques characterized by different heating methods of the specimen. In pulsed phase thermography, a sample is heated by two flash lamps for a short period to inject a Dirac impulse heat in the material. The cooling of the part is monitored with an infrared camera to detect thermal contrast in the image, characteristic of the presence of a defect. In vibrothermography, high frequency vibrations are injected into the sample causing an internal heating observed on surface right above the defect due to diverse phenomena as friction or viscoelastic hysteresis. If pulsed thermography is a well-known technique that has been integrated into the arsenal of industrial NDT methods, vibrothermography is a less common experimental method still subject to theoretical and practical investigations. This article aims to compare the effectiveness of the two methods in the case of different types of composites based on carbon fibers: carbon fiber reinforced plastic (CFRP) plates as well as a completely new material: carbon magnesium composite. [less ▲]

Detailed reference viewed: 52 (10 ULg)
Full Text
See detailDéveloppement d’une ailette d’obus en composite magnésium renforcé de fibres de carbone
Montrieux, Henri-Michel ULg; Mertens, Anne ULg; Lecomte-Beckers, Jacqueline ULg

Report (2012)

This report describes the accomplished breakthrough for the manufacturing of long carbon fibres reinforced magnesium alloy (AZ91). Infiltration can be performed with non-equilibrium conditions such as ... [more ▼]

This report describes the accomplished breakthrough for the manufacturing of long carbon fibres reinforced magnesium alloy (AZ91). Infiltration can be performed with non-equilibrium conditions such as fibres preheating, high liquid compacting pressure and low contact times. Thanks to specific TEOS sol/gel treatment, the reached fibre rate is 60 vol.% and the measured Young's modulus of the composite is ca. 110 GPa. The presence of defects including fibre yarns misorientation, unreinforced areas seems very detrimental to the bending properties. Other advanced infiltration techniques with Al pretreatment (K2ZrF6) of fibres is also considered. [less ▲]

Detailed reference viewed: 37 (4 ULg)
See detailInfluence of Fiber Distribution and Grain Size on the Mechanical Behavior of Friction Stir Processed Mg-C Composites
Mertens, Anne ULg; Montrieux, Henri-Michel ULg; Lecomte-Beckers, Jacqueline ULg et al

Conference (2012, November 12)

Short C fibers-Mg matrix composites have been produced by friction stir processing sandwiches made of a layer of C fabric stacked between two sheets of either the ductile Mg alloy AZ31B, or of the less ... [more ▼]

Short C fibers-Mg matrix composites have been produced by friction stir processing sandwiches made of a layer of C fabric stacked between two sheets of either the ductile Mg alloy AZ31B, or of the less ductile alloy AZ91D, that is capable of age hardening. It has been shown that the choice of the optimal experimental parameters for the production of sound composites was strongly dependent on the nature of the matrix. 3D X-ray tomography reveals that the fibers orient along the onion rings and that they are more or less fragmented depending on the local shear stress during the process. The fiber volume fraction is increased when the nugget volume decreases in particular for the AZ91D base material and for a high advancing speed for the AZ31B base material. The fiber volume fraction influences directly the grain size, the hardness and the tensile properties of the composites. [less ▲]

Detailed reference viewed: 45 (9 ULg)
Full Text
Peer Reviewed
See detailFriction Stir Processing of Magnesium Matrix Composites reinforced with Carbon Fibres: Influence of the Matrix Characteristics and of the Processing Parameters on Microstructural Developments
Mertens, Anne ULg; Simar, Aude; Montrieux, Henri-Michel ULg et al

in W.J.Poole, K.U.Kainer (Ed.) Proceedings of the 9th International Conference On Magnesium Alloys and their Apllications (2012, July 12)

Processing of magnesium matrix composites reinforced with C fibres by ‘liquid state’ methods such as squeeze casting are usually impaired by the poor wettability of C substrates by liquid Mg. As a ... [more ▼]

Processing of magnesium matrix composites reinforced with C fibres by ‘liquid state’ methods such as squeeze casting are usually impaired by the poor wettability of C substrates by liquid Mg. As a consequence, ‘solid state’ processes such as Friction Stir Processing (FSP) appear as very promising alternative processing routes for the production of C-Mg composites. And, more particularly, FSP of a C fabric between two sheets of the fairly ductile Mg alloy AZ31B was shown to be a simple and innovative process for a large-scale production of magnesium matrix composites reinforced with short C fibres. In the present work, FSP of a C fabric between two metal sheets or thin plates has been performed using two different Mg alloys exhibiting quite different mechanical behaviours, i.e. alloy AZ31B and the more brittle alloy AZ91D. And the effect of the matrix characteristics, along with the influence of the FSP experimental parameters such as the rotational and advancing speeds, on the microstructural changes occuring upon processing have been carefully studied. A particular attention has been given to the fragmentation and distribution of the C fibres, as well as to the recrystallisation, solutionising and precipitation processes taking place in the Mg matrix. [less ▲]

Detailed reference viewed: 136 (6 ULg)
Full Text
Peer Reviewed
See detailInfluence of the addition of functionalized MWCNT on mechanical properties on epoxy/carbon fiber and epoxy/carbon-aramid fiber composites
Fernandez, Carolina; Flores, Paulo; Montrieux, Henri-Michel ULg et al

in Proceedings of the 1st Brazilian Conference on Composite Materials (2012, July)

We investigated the effect of the inclusion of carbon nanotubes (CNT) on the mechanical properties and wear behavior of epoxy/carbon and epoxy/carbon-aramid composites in this study. Epoxy/carbon and ... [more ▼]

We investigated the effect of the inclusion of carbon nanotubes (CNT) on the mechanical properties and wear behavior of epoxy/carbon and epoxy/carbon-aramid composites in this study. Epoxy/carbon and epoxy/carbon-aramid composites with 0 wt.% CNT and 0.3 wt.% CNT were manufactured by RTM, amino functionalized multi-walled CNT (MWCNT) were used to modify the matrix. Tensile, compression, two rail shear, Charpy impact tests and Pin On Disc (POD) were performed on the four composites. The EP/CAF composites showed better impact resistance than the ones containing carbon woven. The addition of CNTs improves the shear modulus in 5% for EP/CF composites and 6% for EP/CAF. The results also show that the dynamic friction coefficient is independent of the CNT content, and the specific wear rate shows no improvement with the selected test parameters. [less ▲]

Detailed reference viewed: 167 (14 ULg)
Full Text
Peer Reviewed
See detailProcessing of Carbon Fibers Reinforced Mg Matrix Composites Via Pre-infiltration with Al
Mertens, Anne ULg; Montrieux, Henri-Michel ULg; Halleux, Jacques et al

in Journal of Materials Engineering and Performance (2012), 21(5), 701-706

Mg-C composites offer a suitable alternative to Al alloys while allowing for a significant weight reduction, but their production can be impaired by the poor wettability of C substrates by Mg. In the ... [more ▼]

Mg-C composites offer a suitable alternative to Al alloys while allowing for a significant weight reduction, but their production can be impaired by the poor wettability of C substrates by Mg. In the present work, a new 'liquid' processing route has been investigated. By making use of the well-known effect of a pre-treatment of the C fibres with an aqueous solution of K2ZrF6 in favouring spontaneous wetting of C with Al, C yarns have been pre-impregnated with Al and the feasibility of further using them as reinforcements in Mg matrix composites has been assessed. More particularly, it has thus been shown that, under the thermal conditions involved in the process, C fibres did not suffer damage due to chemical reaction with Al, and also that special care should be taken in order to control the surface condition of the pre-infiltrated yarns. [less ▲]

Detailed reference viewed: 26 (7 ULg)
Full Text
Peer Reviewed
See detailMicrostructure and mechanical properties of stir processed magnesium matrix composites reinforced with carbon fibres
Simar, Aude; Mertens, Anne ULg; Montrieux, Henri-Michel ULg et al

Conference (2012, January 26)

Mg-Al-Zn alloys have been reinforced with carbon fibres using friction stir processing (FSP) which appears as a promising alternative for the large-scale production of C-Mg composites. The process has ... [more ▼]

Mg-Al-Zn alloys have been reinforced with carbon fibres using friction stir processing (FSP) which appears as a promising alternative for the large-scale production of C-Mg composites. The process has shown its ability to produce sound composites with enhanced strength compared to the non-reinforced alloys. The C fabric is fragmented in short fibres leading to a reduction in grain size and an improved hardness. [less ▲]

Detailed reference viewed: 86 (4 ULg)
Full Text
Peer Reviewed
See detailProcessing of carbon fibers reinforced Mg matrix composites via pre-infiltration with Al
Mertens, Anne ULg; Lecomte-Beckers, Jacqueline ULg; Montrieux, Henri-Michel ULg et al

Conference (2011, September)

Mg matrix composites appear as suitable competitors to Al alloys for a wide number of applications, as they allow for a significant weight reduction while exhibiting potentially comparable mechanical ... [more ▼]

Mg matrix composites appear as suitable competitors to Al alloys for a wide number of applications, as they allow for a significant weight reduction while exhibiting potentially comparable mechanical properties. And a large variety of processing routes have already been considered for their production, including 'liquid state' processes such as squeeze casting. These techniques necessitate a very careful control of the wetting behaviour and of the possible interfacial reactions between the reinforcements and the molten metal, along with the solidification process. And this is more particularly true in the case of Mg matrix composites with carbon fibers reinforcements, as Mg alloys are known to exhibit a poor wetting behaviour on carbon substrates. [less ▲]

Detailed reference viewed: 22 (1 ULg)
Full Text
Peer Reviewed
See detailInterfacial phenomena in carbon fibre reinforced magnesium alloys processed by squeeze casting and thixomolding
Montrieux, Henri-Michel ULg; Mertens, Anne ULg; Halleux, Jacques et al

Conference (2011, September)

Composite materials are known to combine interesting properties of different materials. This research concerns magnesium alloys reinforced by carbon fibre weaves. Such a material can theoretically exhibit ... [more ▼]

Composite materials are known to combine interesting properties of different materials. This research concerns magnesium alloys reinforced by carbon fibre weaves. Such a material can theoretically exhibit a high yield strength/density ratio. This composite is thought to be especially promising for aeronautics. A pre-treatment of carbon weaves ensure two fundamental functions. The first is to provide stiffness and cohesion. It helps keeping fibres aligned and well placed in the mould during casting to ensure optimal properties of the final part in the main load directions. This is imperative when the composite is formed with thixomolding for which semi liquid metal is injected with a very high speed. Nevertheless the problem of geometrical carbon weaves stability is also encountered with squeeze casting. The second objective of the pre-treatment is to provide a porous network in the weaves to enhance infiltration by the capillary action. The two functions can be assumed by coating fibres with Al(H2PO4)3, SiO2 combined with starch, or some other oxide containing mixtures. The general process is to assemble carbon weaves, infiltrate them in an aqueous solution or dispersion of oxides and lastly heat them at high temperature to promote covalent bonds with fibres and vaporize or crack carbonaceous agents to let a porous medium. Further the chemical interaction between the coated fibres and the liquid metal during infiltration can influence the species which are present at the interfaces. As magnesium oxide is stable magnesium can react with oxides. This could lead to better wettability of treated weave. However such chemical reactions seem to be thermally activated and take many seconds to initiate, whereas solidification of magnesium is achieved faster. Furthermore the addition of some carbide former elements (Si, Ti, Zr) to a magnesium based alloy can also influence chemical affinity. In conclusion CMg-MMC research concerns composites with low density, high potential mechanical properties and possibility of processing through thixomolding. Firstly the reach of the theoretical performance of the composite includes the ability of dealing with the interaction between fibres and liquid metal. Secondly primary treatment could help to form bonds between matrix and fibres, make rigid weaves and promote a further infiltration. Thirdly chemical affinity between the fibres, magnesium alloy and coating can influence the infiltration. [less ▲]

Detailed reference viewed: 108 (11 ULg)
Full Text
See detailFissuration de dépôts durs à base de Ni et de Co en Laser Cladding
Montrieux, Henri-Michel ULg; Lecomte-Beckers, Jacqueline ULg

Report (2010)

Le rapport concerne l'étude de la fissuration de dépôts durs en Ni-Cr-Fe-B-Si réalisés par Laser Cladding. Il est montré que la fissuration est provoquée par la présence de contraintes mécaniques ... [more ▼]

Le rapport concerne l'étude de la fissuration de dépôts durs en Ni-Cr-Fe-B-Si réalisés par Laser Cladding. Il est montré que la fissuration est provoquée par la présence de contraintes mécaniques résiduelles d'origine thermique et on se trouve face à un phénomène de fissuration à froid. Le travail comporte également la comparaison de 4 nuances de poudre différentes utilisées en Laser Cladding au niveau du coefficient de dilatation thermique et des microstructures. La présence de composés céramiques (borure ou carbure) de nature pro-eutectique a pour effet de diminuer le coefficient de dilatation mais d'augmenter la fragilité. Le rôle du coefficient de dilatation thermique dans la fissuration semble être moins important que la nature de la microstructure en elle-même. Le choix de nuances présentant une structure hypo-eutectique et une haute dureté semble être pertinent en ce qui concerne l'établissement d'un compromis entre la dureté et la résilience de ces matériaux particuliers. [less ▲]

Detailed reference viewed: 112 (14 ULg)
Full Text
See detailStudy of Carbon Fibre-Reinforced Magnesium Composites (Introduction to interfacial phenomenon)
Montrieux, Henri-Michel ULg; Lecomte-Beckers, Jacqueline ULg

Conference (2009, November 06)

Composite materials are known to combine interesting properties of different materials. This research concerns magnesium alloys reinforced by carbon fibres weaves. Such a material can theoretically ... [more ▼]

Composite materials are known to combine interesting properties of different materials. This research concerns magnesium alloys reinforced by carbon fibres weaves. Such a material can theoretically exhibit a yield strength/density ratio around 500 compared to ~200 for Ti6Al4V and ~125 for Al2024-T6. This composite is thought to be especially promising for aeronautics if interaction between fibres and magnesium can be controlled and optimized. The strategy studied to enhance interaction between matrix and fibres consists in covering a thin layer of carbide former metal (Zr, Ti) by PVD as a primary treatment of carbon weaves. This intermediate product can then be heated up between 300-700°C in an argon atmosphere in order to form stable carbides. The wetability of treated weaves by liquid magnesium is potentially higher because carbides are not fully covalent (partially metallic) and so they can have more interface interaction with liquid metals. Further crystal lattice parameters of particular carbides can be close to the ones of metal crystal lattices and interface energy can consequently be reduced when they form carbide-metal bonds. Furthermore magnesium is known for its high oxygen attraction and is able to reduce a lot metallic oxides. It is a key fact because liquid magnesium easy wets its oxide in certain conditions. [less ▲]

Detailed reference viewed: 55 (9 ULg)
Full Text
See detailDépôt Laser de poudre à base Fe-C-Mn-Cr et WC/W2C
Montrieux, Henri-Michel ULg; Lecomte-Beckers, Jacqueline ULg

Report (2009)

Le présent rapport concerne l'analyse de dépôts réalisés par Laser Cladding. Ces dépôts sont composés d'une matrice en acier au carbone contenant 13 wt.% de Mn et 14 wt.% de Cr et de granules sphéroïdales ... [more ▼]

Le présent rapport concerne l'analyse de dépôts réalisés par Laser Cladding. Ces dépôts sont composés d'une matrice en acier au carbone contenant 13 wt.% de Mn et 14 wt.% de Cr et de granules sphéroïdales dures à base de WC/W2C métastable. Le rapport met en évidence le phénomène de décomposition du carbure de tungstène. Le carbure décomposé libère du tungstène dans la matrice métallique et provoque la précipitation localisée d'intermétallique Fe-W qui ont une tendance fragilisante. La matrice métallique d'une composition proche de l'acier Hadfield ne semble pas durcir de manière conséquente lors de chocs. La formation de martensite semble donc écartée dans ces conditions. [less ▲]

Detailed reference viewed: 75 (6 ULg)