References of "Montrieux, Henri-Michel"
     in
Bookmark and Share    
Full Text
See detailValidation of a TEOS based sol-gel coating for the protection of carbon fibres against oxidation regarding their use in metal matrix composites
Montrieux, Henri-Michel ULg; Lecomte-Beckers, Jacqueline ULg; Halleux, Jacques et al

Poster (2017, September 07)

The use of sol-gel coating on graphite substrates has sucessfuly been done. In particular, in the field of metal matrix composites, some authors state that the use and cure of TEOS sol-gel on carbon based ... [more ▼]

The use of sol-gel coating on graphite substrates has sucessfuly been done. In particular, in the field of metal matrix composites, some authors state that the use and cure of TEOS sol-gel on carbon based fibres may improve the liquid magnesium infiltration. The described mechanism is the lowering of the liquid/solid contact angle under some specific conditions of time and temperature by the occurrence of a metal-oxide exothermal chemical reaction. Furthermore the application of silica based sol-gels on carbon fibres in order to control the medium to high temperature oxidation of fibres preforms is less investigated. The primary objective is to understand more deeply the oxidation of some uncoated fibres by the comparison of ESEM observations to TGA/ATD curves. The secondary objective is to formulate and coat a TEOS based sol-gel on T300 carbon fibres and to evaluate the new oxidation behaviour. The ternary objective is to measure in a simple way the gain of oxidation resistance of some coated fibres. [less ▲]

Detailed reference viewed: 34 (4 ULg)
Full Text
See detailThermal treatments for tailoring the microstructure and wear behaviour of friction stir processed Aluminium-C fibres composites
Mertens, Anne ULg; Storti, Marco; Simar, Aude et al

Conference (2017, July 10)

A new and simple method for the production of metal matrix composite by friction stir processing (FSP) sandwiches made from metal sheets (e.g. Mg- or Al-based alloy) intercalated with a reinforcing ... [more ▼]

A new and simple method for the production of metal matrix composite by friction stir processing (FSP) sandwiches made from metal sheets (e.g. Mg- or Al-based alloy) intercalated with a reinforcing material e.g. a carbon fabric has recently been devised by the present authors [A. Mertens et al., Mater. Charact. 107 (2015), 125-133]. This process allowed the production of large-size sound metal matrix composites, but the usage properties (e.g. wear resistance,...) of these composites are not yet optimised. Indeed, the matrix of the composite may be softened after processing as FSP is known to cause dissolution of the precipitates responsible for strengthening Mg- or Al-based alloys [A. Simar et al., Mater. Sci. Eng. A 486 (2008), 85-95]. This work thus aims at investigating the potential of thermal treatments for tailoring the microstructure and wear behaviour of age hardenable aluminium alloy 6005 – C fibres composites. The effect of (solution and) ageing treatments on the microstructure and hardness of FSPed Al-C composites has been investigated using optical and scanning electron microscopy, along with Vickers hardness tests. The wear behaviour of the as-FSPed and of the heat treated specimens has been characterized using a pin-on-disc tribometer. Moreover, reference AA6005 samples without C fibres have been produced and tested under similar conditions. The comparison of the reference and of the composite samples allows a better understanding of the role of the C fibres in controlling the grain size of the Al matrix by influencing recrystallisation during FSP and grain growth during thermal treatments. [less ▲]

Detailed reference viewed: 29 (1 ULg)
Full Text
See detailWear behaviour of laser clad High Speed Steels thick deposits
Hashemi, Seyedeh Neda ULg; Tchuindjang, Jérôme Tchoufack ULg; Dedry, Olivier ULg et al

Conference (2017, June 28)

The wear behaviour of 4 different High Speed Steel (HSS) thick coatings (one cast material and 3 laser clad deposits with varying Mo, V and W contents) was investigated at 2 different test temperatures, i ... [more ▼]

The wear behaviour of 4 different High Speed Steel (HSS) thick coatings (one cast material and 3 laser clad deposits with varying Mo, V and W contents) was investigated at 2 different test temperatures, i.e. at room temperature and at 300°C. For all four materials under both test conditions, oxidative wear was identified as the main wear mechanism. The 3 laser clad deposits exhibit a higher wear resistance compared to the conventional cast reference material, and this effect was mainly attributed to their strongly refined microstructures. Moreover, a detailed comparison of the wear behaviour of the 3 laser clad deposits, in correlation with their microstructures, allows a better understanding of the effect of the different carbides and of their morphology. [less ▲]

Detailed reference viewed: 44 (12 ULg)
Full Text
Peer Reviewed
See detailOxidative wear behaviour of laser clad high speed steel thick deposits: influence of sliding speed, carbide type and morphology
Hashemi, Seyedeh Neda ULg; Mertens, Anne ULg; Montrieux, Henri-Michel ULg et al

in Surface & Coatings Technology (2017), 315

The oxidative wear behaviour of four different High Speed Steel (HSS) thick coatings (one cast material and three laser clad deposits with varying Mo, V and W contents) was investigated using a pin-on ... [more ▼]

The oxidative wear behaviour of four different High Speed Steel (HSS) thick coatings (one cast material and three laser clad deposits with varying Mo, V and W contents) was investigated using a pin-on-disc tribometer at two different sliding speeds of 10cm/s and 50cm/s. Microstructural characterisation (before and after the wear tests) was carried out by SEM and wear debris was analysed by XRD. For all four materials, the oxide layer was formed of hard and brittle haematite-type α-Fe2O3, prone to break and release debris that acted as a third body, thus increasing sample wear. The laser clad HSS materials exhibited a higher wear resistance than their conventional cast counterpart, thanks to their finer microstructures. In particular, the coarser MC and M2C carbides present in the cast material were sensitive to cracking during the wear tests, releasing debris that contributed to increased third body abrasion together with oxide fragments. A detailed comparison of the wear behaviour of the three laser clad deposits, in correlation with their different microstructures, further demonstrated that harder V-rich MC carbides offered better wear resistance compared to the softer W-rich M2C carbides. The morphology of the carbides also played a role in determining the wear resistance at the higher sliding speed of 50 cm/s. Clover-shaped primary MC carbides resisted wear better than angular ones due to their better geometric anchoring. Similarly, the geometric anchoring of eutectic M2C carbides, forming a quasi-continuous network at the grain boundaries of the matrix, proved beneficial at higher sliding speed. [less ▲]

Detailed reference viewed: 56 (32 ULg)
Full Text
Peer Reviewed
See detailStudy of the effect of amino-functionalized multiwall carbon nanotubes on dry sliding wear resistance properties of carbon fiber reinforced thermoset polymers
Pincheira, G.; Montalba, C.; Gacitua, W. et al

in Polymer Bulletin (2016)

This work investigates the effect of multiwall carbon nanotubes (MWCNTs) on the mechanical and tribological behavior of a fiber reinforced composite (FRC). Fiber reinforced composites and nano-engineered ... [more ▼]

This work investigates the effect of multiwall carbon nanotubes (MWCNTs) on the mechanical and tribological behavior of a fiber reinforced composite (FRC). Fiber reinforced composites and nano-engineered FRCs are manufactured by resin transfer molding. In-plane tensile tests, in-plane shear tests and through-thickness compression tests are used to assess the influence of MWCNTs on the material mechanical behavior. Pin on disk dry sliding tests are used to quantify the effect of MWCNTs on the friction coefficient and the specific wear rate. It was determined that (1) MWCNTs have an influence on the improvement on both the through-thickness compression strength and the specific wear rate, and (2) they do not influence the material stiffness, in-plane tensile and shear strengths and the friction coefficient. It is assumed that the observed improvements are due to the demonstrated positive influence of the MWCNTs effect on the matrix/reinforcement interfacial strength and on the matrix fracture toughness. [less ▲]

Detailed reference viewed: 82 (8 ULg)
Full Text
See detailComparison of the wear behavior of high speed steel grades obtained from conventional casting and laser cladding
Hashemi, Seyedeh Neda ULg; Lecomte-Beckers, Jacqueline ULg; Montrieux, Henri-Michel ULg et al

Conference (2015, September)

Tools Steels are alloys which withstand severe mechanical and physicochemical stresses in service. Therefore their alloying design that involved both the original chemical composition and the casting ... [more ▼]

Tools Steels are alloys which withstand severe mechanical and physicochemical stresses in service. Therefore their alloying design that involved both the original chemical composition and the casting route is crucial in order to achieve a tailored microstructure exhibiting enhanced wear performances. Tools steels obtained from conventional casting processes had received lot of attention so far as they yield typical microstructure composed of a quasi-continuous network of coarse grain boundary carbides with grain size ranging between 20 to 200 µm. Direct energy deposition applied to Tools Steels represents a new emerging technique that may allow ultrafine grained microstructures due to the higher cooling rates achieved especially in the solidification range. In this paper, four tool steels grades were studied, one of them being obtained from a conventional casting process and the other ones originated from the direct energy deposition. Differential Thermal Analysis helps enhancing the solidification sequence of the studied alloys, while their microstructure after subsequent heat treatment was characterized by the means of both optical and electron microscopes together with hardness measurements. Tribological tests carried out at room temperature and at high temperature were performed while using a “pin-on-disc” device. Based on the friction coefficient and the wear rate, the wear performances of the tool steel were determined and compared with one another. The influence of metallurgical features (the grain size, or the nature, the size and the distribution of carbides) on the wear behavior was also enhanced. The setting of the wear test parameters together with the microstructure of the studied materials seems to strongly influence the subsequent abrasion and wear mechanisms. [less ▲]

Detailed reference viewed: 65 (14 ULg)
Full Text
Peer Reviewed
See detailComparison of the wear behavior of high speed steel grades obtained from conventional casting and laser cladding
Hashemi, Seyedeh Neda ULg; Dedry, Olivier ULg; Lecomte-Beckers, Jacqueline ULg et al

in Materiaux et tribologie jift 2014 (2015)

The wear characteristics of three high speed steel grades were studied, one of them being obtained from a conventional casting process and two others originated from a laser cladding route. Tribological ... [more ▼]

The wear characteristics of three high speed steel grades were studied, one of them being obtained from a conventional casting process and two others originated from a laser cladding route. Tribological tests were carried out at room temperature using a “pin-on-disc” device. The setting of the wear test parameters together with the microstructure of the studied materials seems to strongly influence the subsequent abrasion and wear mechanisms. The results show that the laser cladded high speed steel materials resist better to wear thanks to their ultrafine microstructure compared to the conventional cast material. [less ▲]

Detailed reference viewed: 61 (28 ULg)
Full Text
Peer Reviewed
See detailInfluence of Fibre Distribution and Grain Size on the Mechanical Behaviour of Friction Stir Processed Mg-C Composites
Mertens, Anne ULg; Simar, Aude; Adrien, Jérôme et al

in Materials Characterization (2015), 107

Short C fibres-Mg matrix composites have been produced by friction stir processing sandwiches made of a layer of C fabric stacked between two sheets of Mg alloy AZ31B or AZ91D. This novel processing ... [more ▼]

Short C fibres-Mg matrix composites have been produced by friction stir processing sandwiches made of a layer of C fabric stacked between two sheets of Mg alloy AZ31B or AZ91D. This novel processing technique can allow the easy production of large-scale metal matrix composites. The paper investigates the microstructure of FSPed C fibre-Mg composites in relation with the fragmentation of the C fibres during FSP and their influence on the tensile properties. 3D X-ray tomography reveals that the fibres orient like onion rings and are more or less fragmented depending on the local shear stress during the process. The fibre volume fraction can be increased from 2.3% to 7.1% by reducing the nugget volume, i.e. by using a higher advancing speed in AZ31B alloy or a stronger matrix alloy, like AZ91D alloy. A higher fibre volume fraction leads to a smaller grain size which brings about an increase of the composite yield strength by 15 to 25%. However, a higher fibre volume fraction also leads to a lower fracture strain. Fracture surface observations reveal that damage occurs by fibre/matrix decohesion along fibres oriented perpendicularly to the loading direction. [less ▲]

Detailed reference viewed: 42 (15 ULg)
Full Text
See detailFriction Stir Processing of Magnesium Matrix Composites Reinforced with Carbon Fibres or Carbon Nanotubes - A Comparative Study
Mertens, Anne ULg; Simar, Aude; Garray, Didier et al

Conference (2013, December 05)

The poor wettability of carbon substrates by liquid Mg and, in the case of carbon nanotubes (CNTs), their strong tendency to agglomerate, are major obstacles to the large-scale production of C-Mg ... [more ▼]

The poor wettability of carbon substrates by liquid Mg and, in the case of carbon nanotubes (CNTs), their strong tendency to agglomerate, are major obstacles to the large-scale production of C-Mg composites by classical ‘liquid-state’ processing routes such as squeeze casting. As an innovative ‘solid state’ process, Friction Stir Processing (FSP) hence appeared as a very promising alternative for the production of C-Mg composites, although the method for inserting the reinforcing phase - in grooves or holes machined in the matrix material - remained time-consuming and labour-intensive. More recently, the present authors proposed a new and easier technique for the insertion of C fibres in FSPed Mg-matrix composites i.e. FSP of a C fabric stacked between two metal sheets. In the current work, the feasibility of extending this latter method to the production of CNTs-Mg composites has been assessed. “Bucky papers” – thin disks made from agglomerated CNTs, thus ensuring for their safe handling – were stacked between two sheets of Mg alloy AZ31B, and the resulting sandwich was FSPed. The effect of FSP experimental parameters such as the rotational and advancing speeds or the number of passes on the microstructural changes occuring upon processing has been studied and compared with the case of C fibres-Mg composites. Moreover, a particular attention has been given to the distribution of the reinforcements in the Mg matrix and to the characterization of the resulting mechanical properties. [less ▲]

Detailed reference viewed: 125 (9 ULg)
Full Text
See detailLes matrices métalliques et céramiques : de nouveaux matériaux composites
Montrieux, Henri-Michel ULg; Lecomte-Beckers, Jacqueline ULg; Mertens, Anne ULg

in Plus Composites (2013), article n°3

Le présent article décrit différentes limitations des matériaux composites à matrice polymère. Outre l’amélioration de la formulation des résines, une des alternatives qui se présente est d’employer une ... [more ▼]

Le présent article décrit différentes limitations des matériaux composites à matrice polymère. Outre l’amélioration de la formulation des résines, une des alternatives qui se présente est d’employer une matrice métallique ou céramique. Certains de ces matériaux nouveaux sont toujours au stade du développement. Il s’agit par exemple des composites pour applications structurales avec une matrice légère en aluminium ou en magnésium pour lesquels les rapports rigidité-poids et résistance-poids sont élevés. La résilience est aussi améliorée par rapport aux matrices classiques simplement renforcées. D’autres composites à matrice métallique tels que les cermets sont industrialisés comme outils de coupe. Des composites à matrice céramique comme le carbone-carbone ou le carbone-SiC peuvent être industrialisés et présentent une durabilité et une température d’utilisation maximale exceptionnelle. Pour terminer, l’article fournit quelques informations sur les techniques nouvelles de mise à forme des matériaux composites telles que le friction stir processing et l’additive manufacturing. [less ▲]

Detailed reference viewed: 113 (14 ULg)
Full Text
See detailMicrostructure and Thermomechanical Behaviour of Magnesium – C nanotubes Composites produced by Friction Stir Processing
Mertens, Anne ULg; Simar, Aude; Garray, Didier et al

Conference (2013, September 09)

Due to their exceptional mechanical and thermal characteristics, C nanotubes (CNTs) are attracting an ever increasing interest in view of tailoring the properties of metal matrix composites (MMCs) e.g ... [more ▼]

Due to their exceptional mechanical and thermal characteristics, C nanotubes (CNTs) are attracting an ever increasing interest in view of tailoring the properties of metal matrix composites (MMCs) e.g. for applications at high service temperature or in thermal management… However, the poor wettability of CNTs by molten metals and their strong tendency to agglomerate are major obstacles to the large-scale production of CNTs-MMCs by classical ‘liquid-state’ processing routes such as squeeze casting. As an innovative ‘solid state’ process, Friction Stir Processing (FSP) hence appears as a very promising alternative for the production of CNTs-MMCs [1], although the method for inserting the reinforcing phase - in grooves or holes machined in the matrix material - remains time-consuming and labour-intensive. More recently, Mertens et al. [2] proposed a new and easier technique for the insertion of C fibres in FSPed Mg-matrix composites i.e. FSP of a C fabric stacked between two metal sheets. In the present work, the feasibility of extending this latter method to the production of CNTs-MMCs has been assessed. “Bucky papers” – made from agglomerated CNTs, thus ensuring for their safe handling – were stacked between two sheets of Mg alloy AZ31B, and the resulting sandwich was FSPed. The effect of FSP experimental parameters such as the rotational and advancing speeds, and the number of FSP passes, on the microstructure of the composites and particularly on the distribution of the CNTs in the Mg matrix has been carefully studied. Moreover, a particular attention has been given to the characterization of the thermomechanical behaviour of the FSPed AZ31B-CNTs composites. [less ▲]

Detailed reference viewed: 58 (3 ULg)
Full Text
Peer Reviewed
See detailComparison between optical pulsed thermography and vibrothermography for the assessment of carbon fibers composite materials
Montrieux, Henri-Michel ULg; Demy, Philippe; Ibarra-Castanedo, Clemente et al

(2013, August 02)

Pulsed thermography and vibrothermography are two active thermography techniques characterized by different heating methods of the specimen. In pulsed phase thermography, a sample is heated by two flash ... [more ▼]

Pulsed thermography and vibrothermography are two active thermography techniques characterized by different heating methods of the specimen. In pulsed phase thermography, a sample is heated by two flash lamps for a short period to inject a Dirac impulse heat in the material. The cooling of the part is monitored with an infrared camera to detect thermal contrast in the image, characteristic of the presence of a defect. In vibrothermography, high frequency vibrations are injected into the sample causing an internal heating observed on surface right above the defect due to diverse phenomena as friction or viscoelastic hysteresis. If pulsed thermography is a well-known technique that has been integrated into the arsenal of industrial NDT methods, vibrothermography is a less common experimental method still subject to theoretical and practical investigations. This article aims to compare the effectiveness of the two methods in the case of different types of composites based on carbon fibers: carbon fiber reinforced plastic (CFRP) plates as well as a completely new material: carbon magnesium composite. [less ▲]

Detailed reference viewed: 167 (19 ULg)
Full Text
See detailDéveloppement d’une ailette d’obus en composite magnésium renforcé de fibres de carbone
Montrieux, Henri-Michel ULg; Mertens, Anne ULg; Lecomte-Beckers, Jacqueline ULg

Report (2012)

This report describes the accomplished breakthrough for the manufacturing of long carbon fibres reinforced magnesium alloy (AZ91). Infiltration can be performed with non-equilibrium conditions such as ... [more ▼]

This report describes the accomplished breakthrough for the manufacturing of long carbon fibres reinforced magnesium alloy (AZ91). Infiltration can be performed with non-equilibrium conditions such as fibres preheating, high liquid compacting pressure and low contact times. Thanks to specific TEOS sol/gel treatment, the reached fibre rate is 60 vol.% and the measured Young's modulus of the composite is ca. 110 GPa. The presence of defects including fibre yarns misorientation, unreinforced areas seems very detrimental to the bending properties. Other advanced infiltration techniques with Al pretreatment (K2ZrF6) of fibres is also considered. [less ▲]

Detailed reference viewed: 72 (6 ULg)
See detailInfluence of Fiber Distribution and Grain Size on the Mechanical Behavior of Friction Stir Processed Mg-C Composites
Mertens, Anne ULg; Montrieux, Henri-Michel ULg; Lecomte-Beckers, Jacqueline ULg et al

Conference (2012, November 12)

Short C fibers-Mg matrix composites have been produced by friction stir processing sandwiches made of a layer of C fabric stacked between two sheets of either the ductile Mg alloy AZ31B, or of the less ... [more ▼]

Short C fibers-Mg matrix composites have been produced by friction stir processing sandwiches made of a layer of C fabric stacked between two sheets of either the ductile Mg alloy AZ31B, or of the less ductile alloy AZ91D, that is capable of age hardening. It has been shown that the choice of the optimal experimental parameters for the production of sound composites was strongly dependent on the nature of the matrix. 3D X-ray tomography reveals that the fibers orient along the onion rings and that they are more or less fragmented depending on the local shear stress during the process. The fiber volume fraction is increased when the nugget volume decreases in particular for the AZ91D base material and for a high advancing speed for the AZ31B base material. The fiber volume fraction influences directly the grain size, the hardness and the tensile properties of the composites. [less ▲]

Detailed reference viewed: 74 (12 ULg)
Full Text
Peer Reviewed
See detailFriction Stir Processing of Magnesium Matrix Composites reinforced with Carbon Fibres: Influence of the Matrix Characteristics and of the Processing Parameters on Microstructural Developments
Mertens, Anne ULg; Simar, Aude; Montrieux, Henri-Michel ULg et al

in W.J.Poole, K.U.Kainer (Ed.) Proceedings of the 9th International Conference On Magnesium Alloys and their Apllications (2012, July 12)

Processing of magnesium matrix composites reinforced with C fibres by ‘liquid state’ methods such as squeeze casting are usually impaired by the poor wettability of C substrates by liquid Mg. As a ... [more ▼]

Processing of magnesium matrix composites reinforced with C fibres by ‘liquid state’ methods such as squeeze casting are usually impaired by the poor wettability of C substrates by liquid Mg. As a consequence, ‘solid state’ processes such as Friction Stir Processing (FSP) appear as very promising alternative processing routes for the production of C-Mg composites. And, more particularly, FSP of a C fabric between two sheets of the fairly ductile Mg alloy AZ31B was shown to be a simple and innovative process for a large-scale production of magnesium matrix composites reinforced with short C fibres. In the present work, FSP of a C fabric between two metal sheets or thin plates has been performed using two different Mg alloys exhibiting quite different mechanical behaviours, i.e. alloy AZ31B and the more brittle alloy AZ91D. And the effect of the matrix characteristics, along with the influence of the FSP experimental parameters such as the rotational and advancing speeds, on the microstructural changes occuring upon processing have been carefully studied. A particular attention has been given to the fragmentation and distribution of the C fibres, as well as to the recrystallisation, solutionising and precipitation processes taking place in the Mg matrix. [less ▲]

Detailed reference viewed: 191 (9 ULg)
Full Text
Peer Reviewed
See detailInfluence of the addition of functionalized MWCNT on mechanical properties on epoxy/carbon fiber and epoxy/carbon-aramid fiber composites
Fernandez, Carolina; Flores, Paulo; Montrieux, Henri-Michel ULg et al

in Proceedings of the 1st Brazilian Conference on Composite Materials (2012, July)

We investigated the effect of the inclusion of carbon nanotubes (CNT) on the mechanical properties and wear behavior of epoxy/carbon and epoxy/carbon-aramid composites in this study. Epoxy/carbon and ... [more ▼]

We investigated the effect of the inclusion of carbon nanotubes (CNT) on the mechanical properties and wear behavior of epoxy/carbon and epoxy/carbon-aramid composites in this study. Epoxy/carbon and epoxy/carbon-aramid composites with 0 wt.% CNT and 0.3 wt.% CNT were manufactured by RTM, amino functionalized multi-walled CNT (MWCNT) were used to modify the matrix. Tensile, compression, two rail shear, Charpy impact tests and Pin On Disc (POD) were performed on the four composites. The EP/CAF composites showed better impact resistance than the ones containing carbon woven. The addition of CNTs improves the shear modulus in 5% for EP/CF composites and 6% for EP/CAF. The results also show that the dynamic friction coefficient is independent of the CNT content, and the specific wear rate shows no improvement with the selected test parameters. [less ▲]

Detailed reference viewed: 256 (29 ULg)