References of "Monson, Russell K"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailClimate control of terrestrial carbon exchange across biomes and continents
Yi, Chuixiang; Ricciuto, Daniel; Li, Runze et al

in Environmental Research Letters (2010), 5(3),

Understanding the relationships between climate and carbon exchange by terrestrial ecosystems is critical to predict future levels of atmospheric carbon dioxide because of the potential accelerating ... [more ▼]

Understanding the relationships between climate and carbon exchange by terrestrial ecosystems is critical to predict future levels of atmospheric carbon dioxide because of the potential accelerating effects of positive climate-carbon cycle feedbacks. However, directly observed relationships between climate and terrestrial CO2 exchange with the atmosphere across biomes and continents are lacking. Here we present data describing the relationships between net ecosystem exchange of carbon (NEE) and climate factors as measured using the eddy covariance method at 125 unique sites in various ecosystems over six continents with a total of 559 site-years. We find that NEE observed at eddy covariance sites is (1) a strong function of mean annual temperature at mid-and high-latitudes, (2) a strong function of dryness at mid-and low-latitudes, and (3) a function of both temperature and dryness around the mid-latitudinal belt (45 degrees N). The sensitivity of NEE to mean annual temperature breaks down at similar to 16 degrees C (a threshold value of mean annual temperature), above which no further increase of CO2 uptake with temperature was observed and dryness influence overrules temperature influence. [less ▲]

Detailed reference viewed: 188 (3 ULg)
Full Text
Peer Reviewed
See detailLatitudinal patterns of magnitude and interannual variability in net ecosystem exchange regulated by biological and environmental variables
Yuan, Wenping; Luo, Yiqi; Richardson, Andrew D et al

in Global Change Biology (2009), 15(12), 2905-2920

Over the last two and half decades, strong evidence showed that the terrestrial ecosystems are acting as a net sink for atmospheric carbon. However the spatial and temporal patterns of variation in the ... [more ▼]

Over the last two and half decades, strong evidence showed that the terrestrial ecosystems are acting as a net sink for atmospheric carbon. However the spatial and temporal patterns of variation in the sink are not well known. In this study, we examined latitudinal patterns of interannual variability (IAV) in net ecosystem exchange (NEE) of CO2 based on 163 site-years of eddy covariance data, from 39 northern-hemisphere research sites located at latitudes ranging from similar to 29 degrees N to similar to 64 degrees N. We computed the standard deviation of annual NEE integrals at individual sites to represent absolute interannual variability (AIAV), and the corresponding coefficient of variation as a measure of relative interannual variability (RIAV). Our results showed decreased trends of annual NEE with increasing latitude for both deciduous broadleaf forests and evergreen needleleaf forests. Gross primary production (GPP) explained a significant proportion of the spatial variation of NEE across evergreen needleleaf forests, whereas, across deciduous broadleaf forests, it is ecosystem respiration (Re). In addition, AIAV in GPP and Re increased significantly with latitude in deciduous broadleaf forests, but AIAV in GPP decreased significantly with latitude in evergreen needleleaf forests. Furthermore, RIAV in NEE, GPP, and Re appeared to increase significantly with latitude in deciduous broadleaf forests, but not in evergreen needleleaf forests. Correlation analyses showed air temperature was the primary environmental factor that determined RIAV of NEE in deciduous broadleaf forest across the North American sites, and none of the chosen climatic factors could explain RIAV of NEE in evergreen needleleaf forests. Mean annual NEE significantly increased with latitude in grasslands. Precipitation was dominant environmental factor for the spatial variation of magnitude and IAV in GPP and Re in grasslands. [less ▲]

Detailed reference viewed: 49 (2 ULg)