References of "Mimes, Collaboration"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailDiscovery of a magnetic field in the rapidly rotating O-type secondary of the colliding-wind binary HD 47129 (Plaskett's star)
Grunhut, J. H.; Wade, G. A.; Leutenegger, M. et al

in Monthly Notices of the Royal Astronomical Society (2013), 428

We report the detection of a strong, organized magnetic field in the secondary component of the massive O8III/I+O7.5V/III double-lined spectroscopic binary system HD 47129 (Plaskett's star) in the context ... [more ▼]

We report the detection of a strong, organized magnetic field in the secondary component of the massive O8III/I+O7.5V/III double-lined spectroscopic binary system HD 47129 (Plaskett's star) in the context of the Magnetism in Massive Stars survey. Eight independent Stokes V observations were acquired using the Echelle SpectroPolarimetric Device for the Observations of Stars (ESPaDOnS) spectropolarimeter at the Canada-France-Hawaii Telescope and the Narval spectropolarimeter at the Télescope Bernard Lyot. Using least-squares deconvolution we obtain definite detections of signal in Stokes V in three observations. No significant signal is detected in the diagnostic null (N) spectra. The Zeeman signatures are broad and track the radial velocity of the secondary component; we therefore conclude that the rapidly rotating secondary component is the magnetized star. Correcting the polarized spectra for the line and continuum of the (sharp-lined) primary, we measured the longitudinal magnetic field from each observation. The longitudinal field of the secondary is variable and exhibits extreme values of -810 ± 150 and +680 ± 190 G, implying a minimum surface dipole polar strength of 2850 ± 500 G. In contrast, we derive an upper limit (3σ) to the primary's surface magnetic field of 230 G. The combination of a strong magnetic field and rapid rotation leads us to conclude that the secondary hosts a centrifugal magnetosphere fed through a magnetically confined wind. We revisit the properties of the optical line profiles and X-ray emission - previously interpreted as a consequence of colliding stellar winds - in this context. We conclude that HD 47129 represents a heretofore unique stellar system - a close, massive binary with a rapidly rotating, magnetized component - that will be a rich target for further study. [less ▲]

Detailed reference viewed: 10 (1 ULg)
Full Text
Peer Reviewed
See detailFirst HARPSpol discoveries of magnetic fields in massive stars
Alecian, E.; Kochukhov, O.; Neiner, C. et al

in Astronomy and Astrophysics (2011), 536

In the framework of the Magnetism in Massive Stars (MiMeS) project, a HARPSpol Large Program at the 3.6m-ESO telescope has recently started to collect high-resolution spectropolarimetric data of a large ... [more ▼]

In the framework of the Magnetism in Massive Stars (MiMeS) project, a HARPSpol Large Program at the 3.6m-ESO telescope has recently started to collect high-resolution spectropolarimetric data of a large number of Southern massive OB stars in the field of the Galaxy and in many young clusters and associations. We report on the first discoveries of magnetic fields in two massive stars with HARPSpol - HD 130807 and HD 122451, and confirm the presence of a magnetic field at the surface of HD 105382 that was previously observed with a low spectral resolution device. The longitudinal magnetic field measurements strongly vary for HD 130807 from ~-100 G to ~700 G. Those of HD 122451 and HD 105382 are less variable with values ranging from ~-40 to -80 G, and from ~-300 to -600 G, respectively. The discovery and confirmation of three new magnetic massive stars, including at least two He-weak stars, is an important contribution to one of MiMeS objectives: the understanding of the origin of magnetic fields in massive stars and their impact on stellar structure and evolution. Based on observations collected at the European Southern Observatory, Chile (Program ID 187.D-0917). [less ▲]

Detailed reference viewed: 17 (5 ULg)