References of "Miltner, Hans"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailFrom polyester grafting onto POSS nanocage by ring-opening polymerization to high performance polyester/POSS nanocomposites
Goffin, Anne-Lise; Duquesne, Emmanuel; Raquez, Jean-Marie et al

in Journal of Materials Chemistry (2010), 20

Polyester-grafted polyhedral oligomeric silsesquioxane (POSS) nanohybrids selectively produced by ring-opening polymerization of epsilon-caprolactone and L,L-lactide (A.-L. Goffin, E. Duquesne, S. Moins ... [more ▼]

Polyester-grafted polyhedral oligomeric silsesquioxane (POSS) nanohybrids selectively produced by ring-opening polymerization of epsilon-caprolactone and L,L-lactide (A.-L. Goffin, E. Duquesne, S. Moins, M. Alexandre, Ph. Dubois, Eur. Polym. Journal, 2007, 43, 4103) were studied as ‘‘masterbatches’’ by melt-blending within their corresponding commercial polymeric matrices, i.e., poly(epsilon-caprolactone) (PCL) and poly(L,L-lactide) (PLA). For the sake of comparison, neat POSS nanoparticles were also dispersed in PCL and PLA. The objective was to prepare aliphatic polyester-based nanocomposites with enhanced crystallization behavior, and therefore, enhanced thermo-mechanical properties. Wide-angle X-ray scattering and transmission electron microscopy attested for the dispersion of individualized POSS nanoparticles in the resulting nanocomposite materials only when the polyester-grafted POSS nanohybrid was used as a masterbatch. The large impact of such finely dispersed (grafted) nanoparticles on the crystallization behavior for the corresponding polyester matrices was noticed, as evidenced by differential scanning calorimetry analysis. Indeed, well-dispersed POSS nanoparticles acted as efficient nucleating sites, significantly increasing the crystallinity degree of both PCL and PLA matrices. As a result, a positive impact on thermo-mechanical properties was highlighted by dynamic mechanical thermal analysis. [less ▲]

Detailed reference viewed: 14 (0 ULg)
Full Text
Peer Reviewed
See detailMicroscopic morphology of chlorinated polyethylene nanocomposites synthesized from poly(e-caprolactone)/clay masterbatches
Brocorens, Patrick; Benali, Samira; Broekaert, Cedric et al

in Langmuir (2008), 24

Chlorinated polyethylene (CPE) nanocomposites were synthesized by melt blending clay-rich/poly( -caprolactone) (PCL) masterbatches to CPE matrices. The masterbatches were prepared following two synthetic ... [more ▼]

Chlorinated polyethylene (CPE) nanocomposites were synthesized by melt blending clay-rich/poly( -caprolactone) (PCL) masterbatches to CPE matrices. The masterbatches were prepared following two synthetic routes: either PCL is melt-blended to the clay or it is grafted to the clay platelets by in situ polymerization. The microscopic morphology of the nanocomposites was characterized by X-ray diffraction, atomic force microscopy, transmission electron microscopy, and modulated temperature differential scanning calorimetry. When using free PCL, intercalated composites are formed, with clay aggregates that can have micrometric dimensions and a morphology similar to that of the talc particles used as fillers in commercial CPE. PCL crystallizes as long lamellae dispersed in the polymer matrix. When using grafted PCL, the nanocomposite is intercalated/exfoliated, and the clay stacks are small and homogeneously dispersed. PCL crystallizes as lamellae and smaller crystals, which are localized along the clay layers. Thanks to the grafting of PCL to the clay platelets, these crystalline domains are thought to form a network with the clay sheets, which is responsible for the large improvement of the mechanical properties of these materials. [less ▲]

Detailed reference viewed: 22 (0 ULg)