References of "Millan-Gabet, Rafael"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailThe Exozodiacal Dust Problem for Direct Observations of Exo-Earths
Roberge, Aki; Chen, Christine H; Millan-Gabet, Rafael et al

in Publications of the Astronomical Society of the Pacific [=PASP] (2012), 124

Debris dust in the habitable zones of stars - otherwise known as exozodiacal dust - comes from extrasolar asteroids and comets and is thus an expected part of a planetary system. Background flux from the ... [more ▼]

Debris dust in the habitable zones of stars - otherwise known as exozodiacal dust - comes from extrasolar asteroids and comets and is thus an expected part of a planetary system. Background flux from the Solar System's zodiacal dust and the exozodiacal dust in the target system is likely to be the largest source of astrophysical noise in direct observations of terrestrial planets in the habitable zones of nearby stars. Furthermore, dust structures like clumps, thought to be produced by dynamical interactions with exoplanets, are a possible source of confusion. In this paper, we qualitatively assess the primary impact of exozodical dust on high-contrast direct imaging at optical wavelengths, such as would be performed with a coronagraph. Then we present the sensitivity of previous, current, and near-term facilities to thermal emission from debris dust at all distances from nearby solar-type stars, as well as our current knowledge of dust levels from recent surveys. Finally, we address the other method of detecting debris dust, through high-contrast imaging in scattered light. This method is currently far less sensitive than thermal emission observations, but provides high spatial resolution for studying dust structures. This paper represents the first report of NASA's Exoplanet Exploration Program Analysis Group (ExoPAG). [less ▲]

Detailed reference viewed: 17 (0 ULg)
Full Text
See detailExozodiacal Disks
Hinz, Phillip; Millan-Gabet, Rafael; Absil, Olivier ULg et al

in Lawson, P. R.; Traub, W. A.; Unwin, S. C. (Eds.) Exoplanet Community Report (2009)

From the viewpoint of direct imaging of exoplanets in the visible or infrared, exozodi dust disks can be both good and bad. An exozodi disk is good if it has structures (cleared regions or resonant clumps ... [more ▼]

From the viewpoint of direct imaging of exoplanets in the visible or infrared, exozodi dust disks can be both good and bad. An exozodi disk is good if it has structures (cleared regions or resonant clumps) that suggest the gravitational presence of planets, however it is bad if the dust fills the instrumental field of view with brightness that swamps the signal from a planet. Unfortunately, it takes very little dust to compete with or overwhelm the light from a planet: an Earth‐twin signal is roughly equal to a 0.1‐AU patch of Solar‐System‐twin zodi, in the visible or infrared. Thus, exozodi measurements are extremely important, but they are also difficult to make. Current limits of detection, in units of the Solar‐System brightness, are a few hundred using the Spitzer Space Telescope, about one hundred with the Keck Interferometer (KI), and about 10 expected from the Large Binocular Telescope Interferometer (LBTI). A small coronagraph or small interferometer in space is needed in order to reach the sensitivity required to detect the glow at the level of our own Solar System. [less ▲]

Detailed reference viewed: 14 (1 ULg)