References of "Migliorini, Alessandra"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailOxygen nightglow emissions of Venus: Vertical distribution and collisional quenching
Gérard, Jean-Claude ULg; Soret, Lauriane ULg; Migliorini, Alessandra et al

in Icarus (2013)

We compare the altitude of three O2 night airglow emissions observed at the limb of Venus by the VIRTIS spectral imager with the values predicted by a model accounting for the different radiative ... [more ▼]

We compare the altitude of three O2 night airglow emissions observed at the limb of Venus by the VIRTIS spectral imager with the values predicted by a model accounting for the different radiative lifetimes and collisional deactivation of the upper O2 states. The O and CO2 density profiles are based on remote sensing observations from the Venus Express spacecraft. Effective production efficiencies of the involved O2 metastable states and quenching coefficients by oxygen and carbon dioxide are adjusted to provide the best match with the measured emission limb profiles. We find values in general good agreement with earlier studies for the c1Σ-u state which gives rise to the Herzberg II bands. In particular, we confirm the low net yield of the c state production and the importance of its deactivation by CO2, for which we derive a quenching coefficient of 3x10-16 cm-3 s-1. The ∼4.5 km higher altitude of the Chamberlain band emission also recently detected by VIRTIS and the ratio of the Herzberg II/Chamberlain bands observed with Venera are well reproduced. To reach agreement, we use a 12% yield for the A’3Δu production following O atom association and quenching coefficients by O and CO2 of 1.3x10-11 cm-3 s-1 and 4.5x10-13 cm-3 s-1 respectively. We conclude that the different peak altitudes of the IR Atmospheric, Herzberg II and the Chamberlain bands reflect the relative importance of radiative relaxation and collisional quenching by O and CO2. [less ▲]

Detailed reference viewed: 28 (9 ULg)
See detailThe oxygen nightglow emissions of Venus: vertical distribution and role of collisional quenching
Gérard, Jean-Claude ULg; Soret, Lauriane ULg; Migliorini, Alessandra et al

Conference (2012, April)

The oxygen nightglow emissions of Venus: vertical distribution and role of collisional quenching J.-C. Gérard (1), L. Soret (1), A. Migliorini (2), G. Piccioni (2), and P. Drossart (3) (1) LPAP ... [more ▼]

The oxygen nightglow emissions of Venus: vertical distribution and role of collisional quenching J.-C. Gérard (1), L. Soret (1), A. Migliorini (2), G. Piccioni (2), and P. Drossart (3) (1) LPAP - Université de Liège - Belgium (jc.gerard@ulg.ac.be, 0032 4 366 9711), (2) INAF - Rome, Italy, (3) LESIA, Observatoire de Paris - Meudon, France Three-body recombination of atomic oxygen produces O2 molecules excited in different electronic states such as a 1∆g, b 1 􏰀+g , A 3 􏰀+u , c 1 􏰀uand A’ 3∆u, each with a specific quantum efficiency. When they radiate, optical transitions are observed in a wide range of wavelengths extending from the ultraviolet to the near infrared. In planetary atmospheres, spontaneous radiative deexcitation compete with collisional quenching with ambient molecules and atoms. As a consequence, the corresponding airglow emission profiles may significantly differ from each other in brightness and altitude of the emitting layer. We model the volume emission rates and limb profiles of the O2 Atmospheric Infrared (a 1∆-X 3 􏰀), Herzberg I (A 3 􏰀-X 3 􏰀), Herzberg II (c 1 􏰀-X 3 􏰀), Chamberlain (A’ 3∆-a 1∆) bands expected on the Venus night side. The quenching rates are taken from laboratory and observational planetary data and we apply two different methods to determine the oxygen and CO2 density profiles. One is based on recent analysis of data collected by instruments on board the Venus Express mission. The second one uses a one-dimensional chemical-diffusive model where the free parameters are the strength of turbulent transport and the downward flux of O atoms. Both approaches indicate that the calculated intensities of each transition range over several orders of magnitude and that differences are expected in the altitude of the maximum emission. These predictions will be compared with VIRTIS/Venus Express limb observations, which make it possible to derive the vertical distribution of the O2 emissions in the visible and infrared. These measurements suggest that no difference is observed between the altitude of the peak of the IR Atmospheric and Herzberg II bands. Conclusions will be drawn about the validity of the current set of quenching coefficients used in the model. [less ▲]

Detailed reference viewed: 17 (1 ULg)