References of "Merckling, Clement"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailIntegration of InGaAs Channel n-MOS Devices on 200mm Si Wafers Using the Aspect-Ratio-Trapping Technique
Waldron, Niamh; Wang, Gang; Nguyen, Ngoc Duy ULg et al

in ECS Transactions (2012), 45

We report on the fabrication on InGaAs/InP implant free quantum well (IFQW) n-MOSFET devices on 200mm wafers in a Si CMOS processing environment. The starting virtual InP substrates were prepared by means ... [more ▼]

We report on the fabrication on InGaAs/InP implant free quantum well (IFQW) n-MOSFET devices on 200mm wafers in a Si CMOS processing environment. The starting virtual InP substrates were prepared by means of the aspect-ratio-trapping technique. Post CMP these substrate resulted in a planar substrate with a rms roughness of 0.32 nm. After channel and gate processing source drain regions were formed by the selective epitaxial growth of Si doped InGaAs. Contact to the source/drain regions was made by a standard W-plug/metal 1 process. The contact resistance was estimated to be on the order of 7x10-7 [ohm sign].cm2. Fully processed devices clearly showed gate modulation albeit on top of high levels of source to drain leakage. The source of this leakage was determined to be the result of the unintentional background doping of the InP buffer layer. Simulations show that the inclusion of the p-InAlAs between the InP and InGaAs can effectively suppress this leakage. This work is a significant step towards the integration of InGaAs based devices on a standard CMOS platform. [less ▲]

Detailed reference viewed: 56 (4 ULg)
See detailIntegration of III-V on Si for High-Mobility CMOS
Waldron, Niamh; Wang, Gang; Nguyen, Ngoc Duy ULg et al

Conference (2012)

Detailed reference viewed: 51 (0 ULg)
Peer Reviewed
See detailIntegration of InGaAs Channel n-MOS Devices on 200mm Si Wafers Using the Aspect-Ratio-Trapping Technique
Waldron, Niamh; Wang, Gang; Nguyen, Ngoc Duy ULg et al

in 221st ECS Meeting (2012)

Detailed reference viewed: 43 (3 ULg)
See detailSubstrates and Gate Dielectrics: the Materials Issue for sub-22 nm CMOS Scaling
Caymax, Matty; Bellenger, Florence; Brammertz, Guy et al

Conference (2010, April 08)

Performance scaling of CMOS technologies beyond the 22 nm node will depend on the successful introduction of high mobility materials such as germanium and compound semiconductors on silicon substrates ... [more ▼]

Performance scaling of CMOS technologies beyond the 22 nm node will depend on the successful introduction of high mobility materials such as germanium and compound semiconductors on silicon substrates, which is not straightforward due to important materials incompatibilities. These semiconductors moreover necessitate new gate dielectric materials as the well-proven recipes of “hafnium-based oxides” are not working for various reasons. The lack of a stable, high-quality native oxide for both semiconductors forces materials scientists and device engineers to focus more on the interface rather than on the dielectric material it self. A first part of this paper discusses problems related to the hetero-epitaxial growth of Ge and of III/V materials on Si. By applying a low-high temperature regime, smooth layers of Ge on Si can be obtained. Because of the lattice mismatch, these layers will relax by the formation of misfit dislocations at the interface, combined with threading arms that extend to the surface. The thickness of the layer determines the final density of threading defects, even in case of confined selective growth in windows in a dielectric hard mask, unless specific measures are taken. The polar nature of III/V’s brings about additional problems of anti-phase domain nucleation. This can be solved by providing extra steps on the starting surface in combination with a “pre-deposition” of arsenic. The combination of Ge and III/V selective epitaxy on patterned wafers allows growing confined layers with a low defect density and of high quality. Moreover, by using standard shallow trench isolation as mask, a very natural integration of these materials in standard Si manufacturing can be realized. The second part of this paper deals with the growth of dielectric materials and control of the resulting interfaces. In contrast to the case of Si, both Ge and III/V surfaces are heavily prone to problems with pinning of the surface Fermi level (FLP), which prohibits an efficient control of the channel by varying gate voltages. In the case of Ge, the problem can be solved by decoupling the gate dielectric from the Ge surface by means of an ultra-thin, strained Si epi-layer, after which the well-known gate stack approaches with ALD-grown metal oxides from the Si world can be used. An alternative, promising solution is passivation with thermally grown GeO2 followed by ALD high-k, although this process requires much more care than its Si counterpart. Gate dielectrics on III/V, finally, are probably an even bigger challenge. Apart from the Ga2O+GaGdOx passivation on GaAs, no real solutions of the FLP problem are known. We will discuss the use of sulfur (from thermal treatments with H2S or in the liquid phase with (NH4)2S) in combination with ALD or MBD-grown high-k layers on both GaAs and InGaAs. This will be compared to alternative approaches based on an epitaxially grown interfacial passivation layer of Ge in combination with MBD-grown Al2O3. [less ▲]

Detailed reference viewed: 94 (6 ULg)