References of "Menard, F"
     in
Bookmark and Share    
Full Text
See detailThe VLTi/PIONIER survey of southern TTauri disks
Anthonioz, F.; Ménard, F.; Pinte, C. et al

in Booth, Mark; Matthews, Brenda; Graham, James (Eds.) Exploring the Formation and Evolution of Planetary Systems (2014, January 01)

Studying the inner regions of protoplanetary disks (1-10 AU) is of importance to understand the formation of planets and the accretion process feeding the forming central star. Herbig AeBe stars are ... [more ▼]

Studying the inner regions of protoplanetary disks (1-10 AU) is of importance to understand the formation of planets and the accretion process feeding the forming central star. Herbig AeBe stars are bright enough to be routinely observed by Near IR interferometers. The data for the fainter T Tauri stars is much more sparse. In this contribution we present the results of our ongoing survey at the VLTI. We used the PIONIER combiner that allows the simultaneous use of 4 telescopes, yielding 6 baselines and 3 independent closure phases at once. PIONIER's integrated optics technology makes it a sensitive instrument. We have observed 22 T Tauri stars so far, the largest survey for T Tauri stars to this date. Our results demonstrate the very significant contribution of an extended component to the interferometric signal. The extended component is different from source to source and the data, with several baselines, offer a way to improve our knowledge of the disk geometry and/or composition. These results validate an earlier study by Pinte et al. 2008 and show that the dust inner radii of T Tauri disks now appear to be in better agreement with the expected position of the dust sublimation radius, contrary to previous claims. [less ▲]

Detailed reference viewed: 7 (0 ULg)
Full Text
Peer Reviewed
See detailPIONIER: a 4-telescope visitor instrument at VLTI
Le Bouquin, J.-B.; Berger, J.-P.; Lazareff, B. et al

in Astronomy and Astrophysics (2011), 535

Context. PIONIER stands for Precision Integrated-Optics Near-infrared Imaging ExpeRiment. It combines four 1.8m Auxilliary Telescopes or four 8m Unit Telescopes of the Very Large Telescope Interferometer ... [more ▼]

Context. PIONIER stands for Precision Integrated-Optics Near-infrared Imaging ExpeRiment. It combines four 1.8m Auxilliary Telescopes or four 8m Unit Telescopes of the Very Large Telescope Interferometer (ESO, Chile) using an integrated optics combiner. The instrument was integrated at IPAG in December 2009 and commissioned at the Paranal Observatory in October 2010. It has provided scientific observations since November 2010. <BR /> Aims: In this paper, we explain the instrumental concept and describe the standard operational modes and the data reduction strategy. We present the typical performance and discuss how to improve them. <BR /> Methods: This paper is based on laboratory data obtained during the integrations at IPAG, as well as on-sky data gathered during the commissioning at VLTI. We illustrate the imaging capability of PIONIER on the binaries δ Sco and HIP11231. <BR /> Results: PIONIER provides six visibilities and three independent closure phases in the H band, either in a broadband mode or with a low spectral dispersion (R = 40), using natural light (i.e. unpolarized). The limiting magnitude is Hmag = 7 in dispersed mode under median atmospheric conditions (seeing < 1, τ[SUB]0[/SUB] > 3ms) with the 1.8m Auxiliary Telescopes. We demonstrate a precision of 0.5deg on the closure phases. The precision on the calibrated visibilities ranges from 3% to 15% depending on the atmospheric conditions. <BR /> Conclusions: PIONIER was installed and successfully tested as a visitor instrument for the VLTI. It permits high angular resolution imaging studies at an unprecedented level of sensitivity. The successful combination of the four 8m Unit Telescopes in March 2011 demonstrates that VLTI is ready for four-telescope operation. Based on observations collected at the European Southern Observatory, Paranal, Chile (commissioning data and 087.C-0709). [less ▲]

Detailed reference viewed: 20 (0 ULg)
Full Text
See detailPIONIER: a visitor instrument for VLTI
Berger, Jean-Philippe; Zins, G.; Lazareff, B. et al

in Danchi, W. C.; Delplancke, F.; Rajagopal, J. K. (Eds.) Optical and Infrared Interferometry II (2010, July)

PIONIER is a 4-telescope visitor instrument for the VLTI, planned to see its first fringes in 2010. It combines four ATs or four UTs using a pairwise ABCD integrated optics combiner that can also be used ... [more ▼]

PIONIER is a 4-telescope visitor instrument for the VLTI, planned to see its first fringes in 2010. It combines four ATs or four UTs using a pairwise ABCD integrated optics combiner that can also be used in scanning mode. It provides low spectral resolution in H and K band. PIONIER is designed for imaging with a specific emphasis on fast fringe recording to allow closure-phases and visibilities to be precisely measured. In this work we provide the detailed description of the instrument and present its updated status. [less ▲]

Detailed reference viewed: 39 (2 ULg)
Full Text
See detailDIGIT, GASPS, DEBRIS and DUNES: four HERSCHEL Open Time Key Programs to survey the dust cycle in circumstellar disks
Augereau, J.-C.; Absil, Olivier ULg; Bouvier, J. et al

in Charbonnel, C.; Combes, F.; Samadi, R. (Eds.) SF2A-2008 (2008, November 01)

Four accepted HERSCHEL open time key programs, DIGIT, GASPS, DEBRIS and DUNES, will study the evolution of the dust grains in circumstellar disks around young and Main Sequence stars. There is a strong ... [more ▼]

Four accepted HERSCHEL open time key programs, DIGIT, GASPS, DEBRIS and DUNES, will study the evolution of the dust grains in circumstellar disks around young and Main Sequence stars. There is a strong implication of the french community in these four projects which represent a total of 930 hours (>38 days) of her\ observing time. The DIGIT and GASPS projects will focus on the first stages of planet formation, while the DEBRIS and DUNES projects will search for extra-solar Kuiper Belt analogs around nearby Main Sequence stars. In this paper, we give an overview of the scientific goals of the four projects and of the numerical tools that we will be providing to the teams to model and interpret the her\ observations from these programs. [less ▲]

Detailed reference viewed: 4 (0 ULg)
Full Text
See detailDiversity among other worlds: characterization of exoplanets by direct detection (Update of a White Paper submitted to the ESA ExoPlanet Roadmap Advisory Team)
Schneider, J.; Boccaletti, A.; Aylward, A. et al

Report (2008)

The physical characterization of exoplanets will require to take spectra at several orbital positions. For that purpose, a direct imaging capability is necessary. Direct imaging requires an efficient ... [more ▼]

The physical characterization of exoplanets will require to take spectra at several orbital positions. For that purpose, a direct imaging capability is necessary. Direct imaging requires an efficient stellar suppression mechanism, associated with an ultrasmooth telescope. We show that before future large space missions (interferometer, 4-8 m class coronograph, external occulter or Fresnel imager), direct imaging of giant planets and close-by super-Earth are at the cross-road of a high scientific interest and a reasonable feasibility. The scientific interest lies in the fact that super-Earths share common geophysical attributes with Earths. They already begin to be detected by radial velocity (RV) and, together with giant planets, they have a larger area than Earths, making them detectable with a 1.5-2 m class telescope in reflected light. We propose such a (space) telescope be a first step before large direct imaging missions. [less ▲]

Detailed reference viewed: 31 (3 ULg)