References of "Mazy, Emmanuel"
     in
Bookmark and Share    
Full Text
See detailDesign and modelisation of a straylight facility for space optical instrument
Mazy, Emmanuel ULg; Stockman, Yvan ULg; Hellin, Marie-Laure ULg

in SPIE (Ed.) 2012 Optical system Design (in press)

In the framework of instrument calibration, straylight issues are a critical aspect that can deteriorate the optical performances of instrument. To cope with this, a new facility is designed dedicated for ... [more ▼]

In the framework of instrument calibration, straylight issues are a critical aspect that can deteriorate the optical performances of instrument. To cope with this, a new facility is designed dedicated for in-field and far field straylight characterization: up to 10-8 for in-field and up to 10-10 for far field straylight in the visible to NIR spectral ranges. Moreover, from previous straylight test performed at CSL, vacuum conditions are needed for reaching the 10-10 rejection requirement mainly to avoid air/dust diffusion. The major constrains are to design a straylight facility either for in-field and out-field straylight measurements. That requires high dynamic range at source level and a high radiance point source allowing small diverging collimated beam. Moreover, the straylight facility has to be implemented into a limited envelope and has to be built with vacuum compatible materials and black coating. As checking the facility performance requires an instrument better than the facility itself, that is no easy to find, so that the performances have been estimated through a modelisation into a non sequential optical software. This modelisation is based on CAD importation of mechanical design, on BRDF characteristics of black coating and on statistical averaging of ray tracing at instrument entrance. [less ▲]

Detailed reference viewed: 44 (8 ULg)
Full Text
Peer Reviewed
See detailThe SWAP EUV Imaging Telescope Part I: Instrument Overview and Pre-Flight Testing
Seaton, Daniel; Berghmans, David; Nicula, Bogdan et al

in Solar Physics (2013), 286

The Sun Watcher with Active Pixels and Image Processing (SWAP) is an EUV solar telescope onboard ESA’s Project for Onboard Autonomy 2 (PROBA2) mission launched on 2 November 2009. SWAP has a spectral ... [more ▼]

The Sun Watcher with Active Pixels and Image Processing (SWAP) is an EUV solar telescope onboard ESA’s Project for Onboard Autonomy 2 (PROBA2) mission launched on 2 November 2009. SWAP has a spectral bandpass centered on 17.4 nm and provides images of the low solar corona over a 54 × 54 arcmin field-of-view with 3.2 arcsec pixels and an imaging cadence of about two minutes. SWAP is designed to monitor all space-weatherrelevant events and features in the low solar corona. Given the limited resources of the PROBA2 microsatellite, the SWAP telescope is designed with various innovative technologies, including an off-axis optical design and a CMOS–APS detector. This article provides reference documentation for users of the SWAP image data. [less ▲]

Detailed reference viewed: 20 (7 ULg)
Full Text
Peer Reviewed
See detailPerformance of Solmacs, a High PV Solar Concentrator With Efficient Optics
Thibert, Tanguy ULg; Hellin, Marie-Laure ULg; Loicq, Jerôme ULg et al

in AIP Conference Proceedings, , Volume 1477 (2012, October 05)

A new solar panel with high concentration photovoltaic technology (x700) has been designed, prototyped and tested in the SOLMACS project. The quality of concentrating optics is a key factor for high ... [more ▼]

A new solar panel with high concentration photovoltaic technology (x700) has been designed, prototyped and tested in the SOLMACS project. The quality of concentrating optics is a key factor for high module efficiency. Therefore new dedicated PMMA Fresnel lenses were studied and produced by injection molding. Lens design, material and production process were optimized to achieve a high optical yield of 86%. Thorough lens performance assessment in optical laboratory was completed with lifetime UV aging tests. Another important aspect is the thermal control of the hot spot created under the solar cell that receives the concentrated flux of 700 Suns. A dedicated heat spreader was developed to achieve passive thermal control with minimum mass and cost. This was supported by thermal models and tests at both cell and module level. 35% triple junction cells were implemented in the module. Micro-assembly technologies were used for the cell packaging and electrical connections. In support to the research, a continuous solar simulator was designed and built to assess the system performance, both at component and module level. The concentrator developments were integrated in a prototype and tested both indoor with the simulator and outdoor on the CSL solar test platform. The overall efficiency of the PV concentrator module is 28.5%. [less ▲]

Detailed reference viewed: 81 (34 ULg)
See detailUltrathin EUV Filters Testing and Characterization under High Flux (13 SC) for Solar Orbiter EUI Instrument
Jacques, Lionel ULg; Halain, Jean-Philippe ULg; Rossi, Laurence ULg et al

Conference (2011, October 07)

The test setup and characterization parameters of ultrathin EUV filters under high solar flux are presented. These 150nm thick aluminium filters are used at the entrance of the Extreme Ultraviolet Imager ... [more ▼]

The test setup and characterization parameters of ultrathin EUV filters under high solar flux are presented. These 150nm thick aluminium filters are used at the entrance of the Extreme Ultraviolet Imager (EUI) payload, which is developed at the Centre Spatial de Liège for the Solar Orbiter ESA M-class mission. The solar flux that they shall have to withstand will be as high as 13 solar constants when the spacecraft reach its 0.28AU perihelion. A specific design based on additional ribs has therefore been developed to enhance the thermal behaviour and heat evacuation while preserving its optical properties. It is essential to assess the design performances under the Solar Orbiter high solar flux. Therefore, thermal vacuum test under 13 solar constants will be performed. The filters temperature profiles will be measured during the tests through infrared imaging. A thermal correlation of the test will then be performed to deduce the filters actual thermal properties to be used in the global instrument geometrical and thermal mathematical models. [less ▲]

Detailed reference viewed: 67 (31 ULg)
Full Text
Peer Reviewed
See detailStraylight-Rejection Performance of the STEREO HI Instruments
Halain, Jean-Philippe ULg; Rochus, Pierre ULg; Defise, Jean-Marc ULg et al

in Solar Physics (2011)

The SECCHI Heliospheric Imager (HI) instruments on-board the STEREO spacecraft have been collecting images of solar wind transients, including coronal mass ejections, as they propagate through the inner ... [more ▼]

The SECCHI Heliospheric Imager (HI) instruments on-board the STEREO spacecraft have been collecting images of solar wind transients, including coronal mass ejections, as they propagate through the inner heliosphere since the beginning of 2007. The scientific use of the images depends critically on the performance of the instruments and its evolution over time. One of the most important factors affecting the performance of the instrument is the rejection of straylight from the Sun and from other bright objects located both within and outside the HI fields of view. This paper presents an analysis of the evolution of the straylight-rejection performance of the HI instrument on each of the two STEREO spacecraft over the three first years of the mission. The straylight level has been evaluated and expressed in mean solar brightness units, in which such scientific observations are usually quoted, using photometric conversion factors. [less ▲]

Detailed reference viewed: 40 (14 ULg)
Full Text
See detailContinuous Solar Simulator for Concentrator Photovoltaic Systems
Thibert, Tanguy ULg; Hellin, Marie-Laure ULg; Loicq, Jerôme ULg et al

in Proceedings of the 25th European Photovoltaic Solar Energy Conference (2010, September)

A continuous solar simulator for measuring performance of concentrator photovoltaic (CPV) systems is presented. The illumination system is based on a Xenon lamp, a homogenizer rod, shaping optics and a ... [more ▼]

A continuous solar simulator for measuring performance of concentrator photovoltaic (CPV) systems is presented. The illumination system is based on a Xenon lamp, a homogenizer rod, shaping optics and a 30cm diameter collimator. The design optimises the reproduction of the characteristics of direct solar illumination: 32’ divergence, high spatial homogeneity, sun-like spectral distribution, with a maximum intensity of 250W/m². It accommodates pass-band and attenuation filters to tune the beam output. It operates in continuous mode, allowing to investigate CPV thermal aspects as well. The present paper addresses the concept design of the solar simulator and associated performance results. [less ▲]

Detailed reference viewed: 81 (14 ULg)
Full Text
See detailFirst light of SWAP on-board PROBA2
Halain, Jean-Philippe ULg; Defise, Jean-Marc ULg; Rochus, Pierre ULg et al

in Proceedings of SPIE (2010), 7732

The SWAP telescope (Sun Watcher using Active Pixel System detector and Image Processing) is an instrument launched on 2nd November 2009 on-board the ESA PROBA2 technological mission. SWAP is a space ... [more ▼]

The SWAP telescope (Sun Watcher using Active Pixel System detector and Image Processing) is an instrument launched on 2nd November 2009 on-board the ESA PROBA2 technological mission. SWAP is a space weather sentinel from a low Earth orbit, providing images at 174 nm of the solar corona. The instrument concept has been adapted to the PROBA2 mini-satellite requirements (compactness, low power electronics and a-thermal opto-mechanical system). It also takes advantage of the platform pointing agility, on-board processor, Packetwire interface and autonomous operations. The key component of SWAP is a radiation resistant CMOS-APS detector combined with onboard compression and data prioritization. SWAP has been developed and qualified at the Centre Spatial de Liège (CSL) and calibrated at the PTB-Bessy facility. After launch, SWAP has provided its first images on 14th November 2009 and started its nominal, scientific phase in February 2010, after 3 months of platform and payload commissioning. This paper summarizes the latest SWAP developments and qualifications, and presents the first light results. [less ▲]

Detailed reference viewed: 130 (5 ULg)
Full Text
See detailAlignement et optimisation d'un simulateur solaire d'une configuration de 1SC à une configuration à 10SC.
De Rauw, Dominique ULg; Mazy, Emmanuel ULg; Stockman, Yvan ULg et al

Conference (2009, November 18)

Ce papier décrit les tâches réalisées dans le cadre d’un projet de modification du simulateur solaire de l’ESA afin de l’adapter et le faire passer d’une configuration où le flux est de une constante ... [more ▼]

Ce papier décrit les tâches réalisées dans le cadre d’un projet de modification du simulateur solaire de l’ESA afin de l’adapter et le faire passer d’une configuration où le flux est de une constante solaire vers une configuration à 10 constantes solaires. Nous exposons les tâches réalisées par le Centre Spatial de Liège en ce qui concerne la modélisation et la simulation des configurations ainsi que les éléments mis au point pour l’alignement des miroirs du simulateur solaire et pour la mesure d’uniformité de flux. [less ▲]

Detailed reference viewed: 42 (9 ULg)
Full Text
Peer Reviewed
See detailThe Heliospheric Imagers Onboard the STEREO Mission
Eyles, C. J.; Harrison, R. A.; Davis, C. et al

in Solar Physics (2009), 254

Mounted on the sides of two widely separated spacecraft, the two Heliospheric Imager (HI) instruments onboard NASA's STEREO mission view, for the first time, the space between the Sun and Earth. These ... [more ▼]

Mounted on the sides of two widely separated spacecraft, the two Heliospheric Imager (HI) instruments onboard NASA's STEREO mission view, for the first time, the space between the Sun and Earth. These instruments are wide-angle visible-light imagers that incorporate sufficient baffling to eliminate scattered light to the extent that the passage of solar coronal mass ejections (CMEs) through the heliosphere can be detected. Each HI instrument comprises two cameras, HI-1 and HI-2, which have 20° and 70° fields of view and are off-pointed from the Sun direction by 14.0° and 53.7°, respectively, with their optical axes aligned in the ecliptic plane. This arrangement provides coverage over solar elongation angles from 4.0° to 88.7° at the viewpoints of the two spacecraft, thereby allowing the observation of Earth-directed CMEs along the Sun -- Earth line to the vicinity of the Earth and beyond. Given the two separated platforms, this also presents the first opportunity to view the structure and evolution of CMEs in three dimensions. The STEREO spacecraft were launched from Cape Canaveral Air Force Base in late October 2006, and the HI instruments have been performing scientific observations since early 2007. The design, development, manufacture, and calibration of these unique instruments are reviewed in this paper. Mission operations, including the initial commissioning phase and the science operations phase, are described. Data processing and analysis procedures are briefly discussed, and ground-test results and in-orbit observations are used to demonstrate that the performance of the instruments meets the original scientific requirements. [less ▲]

Detailed reference viewed: 155 (22 ULg)
Full Text
See detailThe JWST MIRI Double-Prism, Design and Science Drivers
Fisher, Sebastian; Rossi, Laurence ULg; Renotte, Etienne ULg et al

in Proceedings of SPIE (2008, July 12), 7010

We present how it is achieved to mount a double prism in the filter wheel of MIRIM - the imager of JWST’s Mid Infrared Instrument. In order to cope with the extreme conditions of the prisms’ surroundings ... [more ▼]

We present how it is achieved to mount a double prism in the filter wheel of MIRIM - the imager of JWST’s Mid Infrared Instrument. In order to cope with the extreme conditions of the prisms’ surroundings, the low resolution double prism assembly (LRSDPA) design makes high demands on manufacturing accuracy. The design and the manufacturing of the mechanical parts are presented here, while ’Manufacturing and verification of ZnS and Ge prisms for the JWST MIRI imager’ are described in a second paper [1]. We also give insights on the astronomical possibilities of a sensitive MIR spectrometer. Low resolution prism spectroscopy in the wavelength range from 5-10 microns will allow to spectroscopically determine redshifts of objects close to/at the re-ionization phase of the universe. [less ▲]

Detailed reference viewed: 12 (1 ULg)
Full Text
See detailManufacturing and verification of ZnS and Ge prisms for the JWST MIRI imager
Rossi, Laurence ULg; Renotte, Etienne ULg; Plesseria, Jean-Yves ULg et al

in Proceedings of SPIE (2008, June 23), 7018

The JWST Mid-Infrared Instrument (MIRI) is designed to meet the JWST science requirements for mid-IR capabilities and includes an Imager MIRIM provided by CEA (France). A double-prism assembly (DPA ... [more ▼]

The JWST Mid-Infrared Instrument (MIRI) is designed to meet the JWST science requirements for mid-IR capabilities and includes an Imager MIRIM provided by CEA (France). A double-prism assembly (DPA) allows MIRIM to perform low-resolution spectroscopy. The MIRIM DPA shall meet a number of challenging requirements in terms of optical and mechanical constraints, especially severe optical tolerances, limited envelope and very high vibration loads. <br />The University of Cologne (Germany) and the Centre Spatial de Liege (Belgium) are responsible for design, manufacturing, integration, and testing of the prism assembly. A companion paper (Fischer et al. 2008) is presenting the science drivers and mechanical design of the DPA, while this paper is focusing on optical manufacturing and overall verification processes. <br />The first part of this paper describes the manufacturing of Zinc-sulphide and Germanium prisms and techniques to ensure an accurate positioning of the prisms in their holder. (1) The delicate manufacturing of Ge and ZnS materials and (2) the severe specifications on the bearing and optical surfaces flatness and the tolerance on the prism optical angles make this process innovating. The specifications verification is carried out using mechanical and optical measurements; the implemented techniques are described in this paper. <br />The second part concerns the qualification program of the double-prism assembly, including the prisms, the holder and the prisms anti-reflective coatings qualification. Both predictions and actual test results are shown. [less ▲]

Detailed reference viewed: 28 (7 ULg)
Full Text
Peer Reviewed
See detailSun Earth Connection Coronal and Heliospheric Investigation (SECCHI)
Howard, R. A.; Moses, J. D.; Vourlidas, A. et al

in Space Science Reviews (2008), 136

The Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI) is a five telescope package, which has been developed for the Solar Terrestrial Relation Observatory (STEREO) mission by the Naval ... [more ▼]

The Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI) is a five telescope package, which has been developed for the Solar Terrestrial Relation Observatory (STEREO) mission by the Naval Research Laboratory (USA), the Lockheed Solar and Astrophysics Laboratory (USA), the Goddard Space Flight Center (USA), the University of Birmingham (UK), the Rutherford Appleton Laboratory (UK), the Max Planck Institute for Solar System Research (Germany), the Centre Spatiale de Leige (Belgium), the Institut d'Optique (France) and the Institut d'Astrophysique Spatiale (France). SECCHI comprises five telescopes, which together image the solar corona from the solar disk to beyond 1 AU. These telescopes are: an extreme ultraviolet imager (EUVI: 1 1.7 R[SUB]o[/SUB]), two traditional Lyot coronagraphs (COR1: 1.5 4 R[SUB]o[/SUB] and COR2: 2.5 15 R[SUB]o[/SUB]) and two new designs of heliospheric imagers (HI-1: 15 84 R[SUB]o[/SUB] and HI-2: 66 318 R[SUB]o[/SUB]). All the instruments use 2048×2048 pixel CCD arrays in a backside-in mode. The EUVI backside surface has been specially processed for EUV sensitivity, while the others have an anti-reflection coating applied. A multi-tasking operating system, running on a PowerPC CPU, receives commands from the spacecraft, controls the instrument operations, acquires the images and compresses them for downlink through the main science channel (at compression factors typically up to 20×) and also through a low bandwidth channel to be used for space weather forecasting (at compression factors up to 200×). An image compression factor of about 10× enable the collection of images at the rate of about one every 2 3 minutes. Identical instruments, except for different sizes of occulters, are included on the STEREO-A and STEREO-B spacecraft. [less ▲]

Detailed reference viewed: 62 (11 ULg)
Full Text
See detailSWAP: a novel EUV telescope for space weather
Defise, Jean-Marc ULg; Halain, Jean-Philippe ULg; Berghmans, David et al

in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series (2007, September 01)

The SWAP telescope (Sun Watcher using Active Pixel System detector and Image Processing) is being developed to be part of the PROBA2 payload, an ESA technological mission to be launched in early 2008 ... [more ▼]

The SWAP telescope (Sun Watcher using Active Pixel System detector and Image Processing) is being developed to be part of the PROBA2 payload, an ESA technological mission to be launched in early 2008. SWAP is directly derived from the concept of the EIT telescope that we developed in the '90s for the SOHO mission. Several major innovations have been introduced in the design of the instrument in order to be compliant with the requirements of the PROBA2 mini-satellite: compactness with a new of-axis optical design, radiation resistance with a new CMOS-APS detector, a very low power electronics, an athermal opto-mechanical system, optimized onboard compression schemes combined with prioritization of collected data, autonomy with automatic triggering of observation and off-pointing procedures in case of Solar event occurrence, ... All these new features result from the low resource requirements (power, mass, telemetry) of the mini-satellite, but also take advantage of the specificities of a modern technological platform, such as quick pointing agility, new powerful on-board processor, Packetwire interface and autonomous operations. These new enhancements will greatly improve the operations of SWAP as a space weather sentinel from a low Earth orbit while the downlink capabilities are limited. This paper summarizes the conceptual design, the development and the qualification of the instrument, the autonomous operations and the expected performances for science exploitation. [less ▲]

Detailed reference viewed: 60 (7 ULg)
Full Text
See detailSTEREO: Heliospheric Imager design, pre-flight, and in-flight response comparison
Halain, Jean-Philippe ULg; Mazy, Emmanuel ULg; Defise, Jean-Marc ULg et al

in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series (2007, September 01)

The Heliospheric Imager (HI) is part of the SECCHI suite of instruments on-board the two STEREO observatories launched in October 2006. The two HI instruments provide stereographic image pairs of solar ... [more ▼]

The Heliospheric Imager (HI) is part of the SECCHI suite of instruments on-board the two STEREO observatories launched in October 2006. The two HI instruments provide stereographic image pairs of solar coronal plasma and coronal mass ejections (CME) over a field of view ranging from 13 to 330 R[SUB]0[/SUB]. The HI instrument is a combination of two refractive optical systems with a two stage multi-vane baffle system. The key challenge of the instrument design is the rejection of the solar disk light by the front baffle, with total straylight attenuation at the detector level of the order of 10[SUP]-13[/SUP] to 10[SUP]-15[/SUP]. Optical systems and baffles were designed and tested to reach the required rejection. This paper presents the pre-flight optical tests performed under vacuum on the two HI flight models in flight temperature conditions. These tests included an end-to-end straylight verification of the front baffle efficiency, a co-alignment and an optical calibration of the optical systems. A comparison of the theoretical predictions of the instrument response and performance with the calibration results is presented. The instrument in-flight photometric and stray light performance are also presented and compared with the expected results. [less ▲]

Detailed reference viewed: 28 (2 ULg)
See detailIn-orbit verification, calibration, and performance of the Heliospheric Imager on the STEREO mission
Eyles, Chris; Davis, Chris; Harrison, Richard et al

in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series (2007)

The Heliospheric Imager (HI) forms part of the SECCHI suite of instruments aboard the two NASA STEREO spacecraft which were launched successfully from Cape Canaveral AFB on 25 Oct 2006 (26 Oct UTC ... [more ▼]

The Heliospheric Imager (HI) forms part of the SECCHI suite of instruments aboard the two NASA STEREO spacecraft which were launched successfully from Cape Canaveral AFB on 25 Oct 2006 (26 Oct UTC). Following lunar swingby's on 15 Dec and 21 Jan respectively, the two spacecraft were placed in heliocentric orbits at approximately 1 AU - one leading and one lagging the Earth, with each spacecraft separating from the Earth by 22.5° per year. Each HI instrument comprises two wide-angle optical cameras - HI-1 and HI-2 have 20° and 70° fields-of-view which are off-pointed from the Sun direction by 14.0° and 53.7° respectively, with the optical axes pointed towards the ecliptic plane. In this way the cameras will for the first time provide stereographic images of the solar corona, and in particular of Coronal Mass Ejections (CMEs) as they propagate outwards through interplanetary space towards the Earth and beyond. The wide-field coverage of HI enables imaging of solar ejecta from 15 to about 330 solar radii whilst the other SECCHI instruments (2 coronagraphs and an EUV imager) provide coverage from the lower corona out to 15 solar radii. This paper briefly reviews the design and performance requirements for the instrument. The various activation, checkout and calibration activities before and after opening the instrument's protective cover or door (instrument 'first-light') are then described and it is shown that the instrument has met the design requirements, including CCD and camera imaging performance, correction for shutterless operation of the cameras, straylight rejection and thermal requirements. It is demonstrated from observations of a CME event on 24-25 Jan 2007 that the instrument is capable of detecting CMEs at an intensity of 1% of the coronal background. Lessons learnt during the design, development and in-orbit operation of the instrument are discussed. [less ▲]

Detailed reference viewed: 10 (1 ULg)
Full Text
Peer Reviewed
See detailFirst Imaging of Coronal Mass Ejections in the Heliosphere Viewed from Outside the Sun Earth Line
Harrison, Richard A; Davis, Christopher J; Eyles, Christopher J et al

in Solar Physics (2007), 247

We show for the first time images of solar coronal mass ejections (CMEs) viewed using the Heliospheric Imager (HI) instrument aboard the NASA STEREO spacecraft. The HI instruments are wide-angle imaging ... [more ▼]

We show for the first time images of solar coronal mass ejections (CMEs) viewed using the Heliospheric Imager (HI) instrument aboard the NASA STEREO spacecraft. The HI instruments are wide-angle imaging systems designed to detect CMEs in the heliosphere, in particular, for the first time, observing the propagation of such events along the Sun Earth line, that is, those directed towards Earth. At the time of writing the STEREO spacecraft are still close to the Earth and the full advantage of the HI dual-imaging has yet to be realised. However, even these early results show that despite severe technical challenges in their design and implementation, the HI instruments can successfully detect CMEs in the heliosphere, and this is an extremely important milestone for CME research. For the principal event being analysed here we demonstrate an ability to track a CME from the corona to over 40 degrees. The time altitude history shows a constant speed of ascent over at least the first 50 solar radii and some evidence for deceleration at distances of over 20 degrees. Comparisons of associated coronagraph data and the HI images show that the basic structure of the CME remains clearly intact as it propagates from the corona into the heliosphere. Extracting the CME signal requires a consideration of the F-coronal intensity distribution, which can be identified from the HI data. Thus we present the preliminary results on this measured F-coronal intensity and compare these to the modelled F-corona of Koutchmy and Lamy ( IAU Colloq. 85, 63, 1985). This analysis demonstrates that CME material some two orders of magnitude weaker than the F-corona can be detected; a specific example at 40 solar radii revealed CME intensities as low as 1.7×10[SUP]-14[/SUP] of the solar brightness. These observations herald a new era in CME research as we extend our capability for tracking, in particular, Earth-directed CMEs into the heliosphere. [less ▲]

Detailed reference viewed: 23 (2 ULg)
See detailDynamic holography for the space qualification of large reflectors
Thizy, Cédric ULg; Stockman, Yvan ULg; Doyle, D. et al

in Optical Fabrication, Testing, and Metrology II (2005, October)

The next generation of infrared - sub mm space telescopes requires reflectors with large dimensions, high quality and, according to weight issues, are based on composite or new materials technology. The ... [more ▼]

The next generation of infrared - sub mm space telescopes requires reflectors with large dimensions, high quality and, according to weight issues, are based on composite or new materials technology. The challenging tasks of on-ground testing are to achieve the required accuracy in the measurement of these reflectors shape and antenna structures and to verify their performance under simulated space conditions (vacuum, low-high temperatures). A holographic camera for the verification and validation of this type of reflector in a space environment is presented. A diffuser is implemented to measure the deformations of reflective surfaces in a more flexible way. The system has been made compatible with the vacuum conditions. Some elements of the holographic camera (camera lenses, CCD, crystal, optical fibre) have been adapted and tested under vacuum. The metrological certification of the whole system is realised by the measurement of a parabolic CFRP reflector with a 1.1 meter diameter. The results are compared to the one achieved with a high spatial resolution IR interferometer on the same reflector in laboratory conditions and under thermal vacuum conditions. This later test consists in measuring the deformations of the reflector between an initial state at a selected temperature and a final state at another temperature. The comparison between the high spatial resolution IR interferometer and this dynamic holographic method showed very good qualitative and quantitative agreement between the techniques, thus verifying the potential of this new Holographic approach. [less ▲]

Detailed reference viewed: 51 (3 ULg)
Full Text
See detailInnovative designs for the imaging suite on Solar Orbiter
Auchere, Frederic; Song, Xueyen; Rouesnel, Frederic et al

in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series (2005, August 01)

Orbiting around the Sun on an inclined orbit with a 0.2 UA perihelion, the Solar Orbiter probe will provide high resolution views of the Sun from various angles unattainable from Earth. Together with a ... [more ▼]

Orbiting around the Sun on an inclined orbit with a 0.2 UA perihelion, the Solar Orbiter probe will provide high resolution views of the Sun from various angles unattainable from Earth. Together with a set of high resolution imagers, the Full Sun Imager is part of the EUV Imaging suite of the Solar Orbiter mission. The mission's ambitious characteristics draw severe constraints on the design of these instruments. We present a photometrically efficient, compact, and lightweight design for the Full Sun Imager. With a 5 degrees field of view, this telescope will be able to see the global solar coronal structure from high viewing angles. Thermal solutions reducing the maximum power trapped in the High Resolution Imagers are also proposed. [less ▲]

Detailed reference viewed: 41 (3 ULg)
Full Text
Peer Reviewed
See detailQualification of large reflectors in space environment with a holographic camera based on a BSO crystal
Thizy, Cédric ULg; Stockman, Yvan ULg; Lemaire, Philippe ULg et al

in Zhang, G.; Kip, D.; Nolte, D. (Eds.) et al Photorefractive Effects, Materials, and Devices (2005, July)

The next generation of infrared - sub mm space telescopes requires some reflectors with large dimensions and high quality. These ones, according to weight issues, are based on composite materials for ... [more ▼]

The next generation of infrared - sub mm space telescopes requires some reflectors with large dimensions and high quality. These ones, according to weight issues, are based on composite materials for which the behaviors at low temperatures are badly known. A holographic interferometry method for the verification and validation of this type of reflectors in a space environment is presented. It is based on a dynamic holographic camera observing a diffuser illuminated by the object beam coming from the reflecting surface. Photorefractive crystals being self-processing and reusable mediums, the measuring range of the holographic camera is increased with respect to other optical interferometric methods. The metrological certification of the whole system was realised by the measurement of a parabolic antenna with a 1.1 meter diameter, a known behavior and placed in a simulated space environment [less ▲]

Detailed reference viewed: 27 (2 ULg)
Full Text
See detailQualification de grands réflecteurs en environnement spatial
Thizy, Cédric ULg; Stockman, Yvan ULg; Doyle, Dominic et al

in Smigielski, P. (Ed.) Actes du Cinquième colloque francophone Méthodes et Techniques Optiques pour l'Industrie (2004, November)

Les nouvelles générations de télescopes spatiaux dans le domaine infrarouge nécessitent des réflecteurs de grandes dimensions et de haute qualité. Ceux-ci, pour des raisons de poids, sont basés sur les ... [more ▼]

Les nouvelles générations de télescopes spatiaux dans le domaine infrarouge nécessitent des réflecteurs de grandes dimensions et de haute qualité. Ceux-ci, pour des raisons de poids, sont basés sur les technologies des matériaux composites dont les comportements aux basses températures sont mal connus. Une méthode par interférométrie holographique de vérification et de validation en environnement spatial de ce type de réflecteurs est présentée. Elle est basée sur l'utilisation d'une caméra holographique dynamique observant un dépoli sur lequel est projeté le faisceau objet venant de la surface réfléchissante. Outre une augmentation de la dynamique de mesure, cette méthode offre l’avantage principal, par rapport aux techniques d’interférométrie optique, de ne pas nécessiter de système optique d’adaptation du front d’onde au réflecteur à mesurer et donc un gain de flexibilité majeur pour des formes exotiques de réflecteurs (types asphériques). Le système de mesure a été calibré avec un interféromètre ponctuel à effet Doppler. L'influence des différentes sources d’erreur du système sur la mesure a été évaluée. Cette évaluation a porté principalement sur des aspects vibratoires et thermiques. Ces réflecteurs devant être testés sous vide et à basses températures, le système de mesure a été rendu compatible à ces conditions. Des éléments de la caméra holographique (objectifs, CCD, cristal, fibre optique) ont été adaptés et testés sous vide. La certification métrologique de l’ensemble du système sera réalisée par la mesure d'une antenne parabolique, de 1.1 m de diamètre de comportement connu et placée dans un environnement spatial simulé. Le test consistera à mesurer les déplacements et déformations de l'antenne entre un état initial à la température ambiante, et un état final à une température d'environ 130K. [less ▲]

Detailed reference viewed: 38 (6 ULg)