References of "Masset, Julien"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailImprovement of fermentative biohydrogen production by Clostridium butyricum CWBI1009 in sequenced-batch, horizontal fixed bed and biodisc-like anaerobic reactors with biomass retention
Hiligsmann, Serge ULg; Beckers, Laurent; Masset, Julien et al

in International Journal of Hydrogen Energy (2014), 39

A horizontal tubular fixed bed bioreactor (HFBR) and an anaerobic biodisc-like reactor (AnBDR) were designed to both fix Clostridium biomass and enable rapid transfer of the hydrogen produced to gas phase ... [more ▼]

A horizontal tubular fixed bed bioreactor (HFBR) and an anaerobic biodisc-like reactor (AnBDR) were designed to both fix Clostridium biomass and enable rapid transfer of the hydrogen produced to gas phase in order to decrease the strong effect of H2 partial pressure and H2 supersaturation on the performances of Clostridium strains. The highest H2 production rate (703 mL H2/L.h) and yield (302 mL/g glucose consumed i.e. 2.4 mol/mol) with the pure culture were recorded in the AnBDR with 300 mL culture medium (total volume 2.3 L) at pH 5.2 and a glucose loading rate of 2.87 g/L.h. These results are about 2.3 and 1.3-fold higher than those achieved in the same bioreactor with 500 mL liquid medium and with the same glucose consumption rate. Therefore, our experimentations and a short review of the literature reported in this paper emphasize the relevance of performing bioreactors with high L/G transfer. [less ▲]

Detailed reference viewed: 21 (4 ULg)
Full Text
Peer Reviewed
See detailInvestigating the factors for fermentative biohydrogen improvement: original bioreactors design and hydrogen partial pressure effect
Beckers, Laurent ULg; Hiligsmann, Serge ULg; Hamilton, Christopher ULg et al

in WHEC 2012, Toronto June 3rd - 7th (2012, June 05)

The anaerobic production of hydrogen from biomass offers the potential production of usable biogas from a variety of renewable resources. However, in order to produce hydrogen at high yields and ... [more ▼]

The anaerobic production of hydrogen from biomass offers the potential production of usable biogas from a variety of renewable resources. However, in order to produce hydrogen at high yields and production rates the biotechnological process needs to be further optimized and efficient bioreactors must be designed [1]. At the CWBI, a continuous horizontal rotating cylinder bioreactor has been designed and investigated to produce biohydrogen from glucose by the strain Clostridium butyricum [2] at good yields (1,9molH2•molglucose-1) and production rates (48,6mmolH2•Lmilieu-1.molhexose-1•h-1). This reactor has an internal volume of 2.3L and a small working volume (300ml) (fig.1). It enhances the hydrogen production rates (by about three times more than a completely stirred bioreactor) by partially immobilizing the bacteria on the porous support. Moreover, the rotating cylinder design enables efficient H2 gas transfer from the liquid phase increasing hydrogen yields by about 25% compared to a completely stirred bioreactor [3-4]. Other original bioreactors, such as a trickle bed, have been built with the same aim of lowering the hydrogen partial pressure and led to similar results. Our work shows the importance of a good liquid to gas transfers in the biohydrogen-producing reactors to reach higher performances. [less ▲]

Detailed reference viewed: 45 (13 ULg)
Full Text
Peer Reviewed
See detailEffects of hydrogen partial pressure on fermentative biohydrogen production by a chemotropic Clostridium bacterium in a new horizontal rotating cylinder reactor
Beckers, Laurent ULg; Hiligsmann, Serge ULg; MAsset, Julien et al

in Energy Procedia (2012)

In order to produce fermentative biohydrogen at high yields and production rates, efficient bioreactors have to be designed. A new reactor called anaerobic biodisc reactor allowed the production of ... [more ▼]

In order to produce fermentative biohydrogen at high yields and production rates, efficient bioreactors have to be designed. A new reactor called anaerobic biodisc reactor allowed the production of biohydrogen from glucose with the selected Clostridium sp. strain at high yields (2.49 molH2•molglucose-1) and production rates (598 mlH2•medium-1•h-1). The bacteria were fixed on a rotating support enabling efficient gas transfer from the liquid to the phase. It allowed the metabolism of the bacteria to produce more hydrogen. Moreover, an increase of the total pressure 0.18 bar lowered the yields of 19.5% while a decrease of 0.11 bar increased the yields of 7%. Our work concludes on the importance of providing good liquid to gas transfers in the biohydrogen-producing reactors. [less ▲]

Detailed reference viewed: 67 (13 ULg)
Full Text
Peer Reviewed
See detailFermentative hydrogen production from glucose and starch using pure strains and artificial co-cultures ofClostridium spp.
Masset, Julien; Calusinska, Magdalena ULg; Hamilton, Christopher et al

in Biotechnology for biofuels (2012), 5(1), 35

ABSTRACT: BACKGROUND: Pure bacterial strains give better yields when producing H2 than mixed, natural communities. However the main drawback with the pure cultures is the need to perform the fermentations ... [more ▼]

ABSTRACT: BACKGROUND: Pure bacterial strains give better yields when producing H2 than mixed, natural communities. However the main drawback with the pure cultures is the need to perform the fermentations under sterile conditions. Therefore, H2 production using artificial co-cultures, composed of well characterized strains, is one of the directions currently undertaken in the field of biohydrogen research. RESULTS: Four pure Clostridium cultures, including C. butyricum CWBI1009, C. pasteurianum DSM525, C. beijerinckii DSM1820 and C. felsineum DSM749, and three different co-cultures composed of (1) C. pasteurianum and C. felsineum, (2) C. butyricum and C. felsineum, (3) C. butyricum and C. pasteurianum, were grown in 20 L batch bioreactors. In the first part of the study a strategy composed of three-culture sequences was developed to determine the optimal pH for H2 production (sequence 1); and the H2-producing potential of each pure strain and co-culture, during glucose (sequence 2) and starch (sequence 3) fermentations at the optimal pH. The best H2 yields were obtained for starch fermentations, and the highest yield of 2.91 mol H2/ mol hexose was reported for C. butyricum. By contrast, the biogas production rates were higher for glucose fermentations and the highest value of 1.5 L biogas/ h was observed for the co-culture (1). In general co-cultures produced H2 at higher rates than the pure Clostridium cultures, without negatively affecting the H2 yields. Interestingly, all the Clostridium strains and co-cultures were shown to utilize lactate (present in a starch-containing medium), and C. beijerinckii was able to re-consume formate producing additional H2. In the second part of the study the co-culture (3) was used to produce H2 during 13 days of glucose fermentation in a sequencing batch reactor (SBR). In addition, the species dynamics, as monitored by qPCR (quantitative real-time PCR), showed a stable coexistence of C. pasteurianum and C. butyricum during this fermentation. CONCLUSIONS: The four pure Clostridium strains and the artificial co-cultures tested in this study were shown to efficiently produce H2 using glucose and starch as carbon sources. The artificial co-cultures produced H2 at higher rates than the pure strains, while the H2 yields were only slightly affected. [less ▲]

Detailed reference viewed: 55 (19 ULg)
Full Text
Peer Reviewed
See detailEffets de la pression partielle en hydrogène sur la production anaérobie de bioH2 par une bactérie chimiotrophe du genre Clostridium dans un nouveau réacteur à cylindre horizontal rotatif.
Beckers, Laurent ULg; Hiligsmann, Serge ULg; Hamilton, Christopher ULg et al

in Récents Progrès en Génie des Procédés (2011, December), 101

Hydrogen is widely considered as the most promising energetic carrier. At an industrial scale, steam reforming of methane is currently the major hydrogen producing process. But it may also be produced ... [more ▼]

Hydrogen is widely considered as the most promising energetic carrier. At an industrial scale, steam reforming of methane is currently the major hydrogen producing process. But it may also be produced from renewable biomass. Indeed, the fermentative production of hydrogen from renewable biomass using anaerobic bacteria could at least partially reduce our dependence on fossil fuel, decrease the carbon dioxide emissions and produce “green” energy. It offers the potential production of usable hydrogen from a variety of renewable resources such as carbohydrates wastes from agriculture or agro-food industries. This technology is based on anaerobic fermentation, called dark fermentation, by chemotrophic bacteria. The investigations carried out at CWBI involve selection and characterization of bacteria strains able to produce biohydrogen efficiently and with a wide range of substrate. The selected strains at the laboratory has been characterised as Clostridium sp. In order to produce hydrogen at high yields and production rates, the biotechnological process needs to be further optimized and efficient bioreactors must be designed. At CWBI, a new reactor called “horizontal rotating cylinder bioreactor” allows the production of biohydrogen from glucose with our Clostridium sp. strain with a high yield and production rate. This reactor, working continuously, has an internal volume of 2.3l but a working volume (liquid phase) of 300ml. Firstly, it enhances the hydrogen production rate by partially fixing the bacteria on the porous cylinder and thus increasing the cell concentration in the bioreactor. Secondly, the rotative cylinder enables efficient gas transfer (mainly hydrogen) from the liquid phase where it is produced by the bacteria. This is an important way to enhance hydrogen production yield by allowing the bacteria metabolism to shift in a fermentation type that produces more hydrogen. This was confirmed by increasing or decreasing the total pressure in the bioreactor and observing the influence of hydrogen production. The liquid to gas hydrogen transfer is possibly an important factor to enhance the biogas production. Our investigation confirmed this by testing different liquid to gas transfer condition in BHP test (batch fermentation in 250ml serum bottles).This was made either by decreasing total and partial pressure or by increasing the mixing state of the media. Our work concludes the importance of providing good liquid to gas transfers in the biohydrogen producing reactors to enhance the hydrogen production and reach higher yields and production rates. [less ▲]

Detailed reference viewed: 53 (12 ULg)
Full Text
Peer Reviewed
See detailEffects of hydrogen partial pressure on fermentative biohydrogen production by a chemotropic Clostridium bacterium in a new horizontal rotating cylinder reactor
Beckers, Laurent ULg; Hiligsmann, Serge ULg; Hamilton, Christopher ULg et al

Poster (2011, December)

The fermentative production of hydrogen using chemotrophic anaerobic bacteria offers a new way to produce “green” energy from a large variety of renewable resources and organic wastes. In order to produce ... [more ▼]

The fermentative production of hydrogen using chemotrophic anaerobic bacteria offers a new way to produce “green” energy from a large variety of renewable resources and organic wastes. In order to produce hydrogen at high yields and production rates, efficient bioreactors must be designed. A new reactor called “horizontal rotating cylinder bioreactor” allows the production of biohydrogen from glucose with the selected Clostridium sp. strain at high yields (1,9molH2·molglucose-1) and production rates (48,6mmolH2·lmilieu-1.molhexose-1·h-1). The rotative cylinder where the bacteria are fixed enables efficient gas transfer (mainly hydrogen) from the liquid phase where it is produced by the bacteria. This is an important way to allow the bacteria metabolism to shift in a fermentation pathway that produces more hydrogen. This was confirmed by varying the total pressure in the bioreactor. An increase of the total pressure 0,18bar lowered the yields of 19,5% while a decrease of 0,11bar increased the yields of 7%. Our work concludes the importance of providing good liquid to gas transfers in the biohydrogen-producing reactors in order to reach higher yields and production rates. [less ▲]

Detailed reference viewed: 29 (5 ULg)