References of "Martin, Stefan"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailHigh-contrast Stellar Observations within the Diffraction Limit at the Palomar Hale Telescope
Mennesson, B.; Hanot, Charles ULg; Serabyn, Eugene et al

in Astrophysical Journal (2011), 743

We report on high-accuracy high-resolution (<20 mas) stellar observations obtained with the Palomar Fiber Nuller (PFN), a near-infrared (sime2.2 μm) interferometric coronagraph installed at the Palomar ... [more ▼]

We report on high-accuracy high-resolution (<20 mas) stellar observations obtained with the Palomar Fiber Nuller (PFN), a near-infrared (sime2.2 μm) interferometric coronagraph installed at the Palomar Hale telescope. The PFN uses destructive interference between two elliptical (3 m × 1.5 m) sub-apertures of the primary to reach high dynamic range inside the diffraction limit of the full telescope. In order to validate the PFN's instrumental approach and its data reduction strategy, based on the newly developed "Null Self-Calibration" (NSC) method, we observed a sample of eight well-characterized bright giants and supergiants. The quantity measured is the source astrophysical null depth, or equivalently the object's visibility at the PFN 3.2 m interferometric baseline. For the bare stars α Boo, α Her, β And, and α Aur, PFN measurements are in excellent agreement with previous stellar photosphere measurements from long baseline interferometry. For the mass-losing stars β Peg, α Ori, ρ Per, and χ Cyg, circumstellar emission and/or asymmetries are detected. Overall, these early observations demonstrate the PFN's ability to measure astrophysical null depths below 10[SUP]-2[/SUP] (limited by stellar diameters), with 1 σ uncertainties as low as a few 10[SUP]-4[/SUP]. Such visibility accuracy is unmatched at this spatial resolution in the near-infrared and translates into a contrast better than 10[SUP]-3[/SUP] within the diffraction limit. With further improvements anticipated in 2011/2012, a state-of-the-art infrared science camera and a new extreme adaptive optics system, the PFN should provide a unique tool for the detection of hot debris disks and young self-luminous sub-stellar companions in the immediate vicinity of nearby stars. [less ▲]

Detailed reference viewed: 18 (3 ULg)
Full Text
Peer Reviewed
See detailNew Constraints on Companions and Dust within a Few AU of Vega
Mennesson, B.; Serabyn, E.; Hanot, Charles ULg et al

in Astrophysical Journal (2011), 736

We report on high contrast near-infrared (~2.2 μm) observations of Vega obtained with the Palomar Fiber Nuller, a dual sub-aperture rotating coronagraph installed at the Palomar Hale telescope. The data ... [more ▼]

We report on high contrast near-infrared (~2.2 μm) observations of Vega obtained with the Palomar Fiber Nuller, a dual sub-aperture rotating coronagraph installed at the Palomar Hale telescope. The data show consistent astrophysical null depth measurements at the ~= 10[SUP]–3[/SUP] level or below for three different baseline orientations spanning 60 deg in azimuth, with individual 1σ uncertainties <=7 × 10[SUP]–4[/SUP]. These high cancellation and accuracy levels translate into a dynamic range greater than 1000:1 inside the diffraction limit of the 5 m telescope beam. Such high contrast performance is unprecedented in the near-infrared and provides improved constraints on Vega's immediate (sime20 to 250 mas, or sime0.15 to 2 AU) environment. In particular, our measurements rule out any potential companion in the [0.25-1 AU] region contributing more than 1% of the overall near-infrared stellar flux, with limits as low as 0.2% near 0.6 AU. These are the best upper limits established so far by direct detection for a companion to Vega in this inner region. We also conclude that any dust population contributing a significant (>=1%) near-infrared thermal excess can arise only within 0.2 AU of the star, and that it must consist of much smaller grains than in the solar zodiacal cloud. Dust emission from farther than sime2 AU is also not ruled out by our observations, but would have to originate in strong scattering, pointing again to very small grains. Based on observations obtained at the Hale Telescope, Palomar Observatory as part of a continuing collaboration between the California Institute of Technology, NASA/JPL, and Cornell University. [less ▲]

Detailed reference viewed: 10 (0 ULg)
Full Text
Peer Reviewed
See detailImproving Interferometric null depth measurements using statistical distributions: theory and first results with the Palomar Fiber Nuller
Hanot, Charles ULg; Mennesson, Bertrand; Martin, Stefan et al

in Astrophysical Journal (2011), 729(2), 110

A new "self-calibrated" statistical analysis method has been developed for the reduction of nulling interferometry data. The idea is to use the statistical distributions of the fluctuating null depth and ... [more ▼]

A new "self-calibrated" statistical analysis method has been developed for the reduction of nulling interferometry data. The idea is to use the statistical distributions of the fluctuating null depth and beam intensities to retrieve the astrophysical null depth (or equivalently the object's visibility) in the presence of fast atmospheric fluctuations. The approach yields an accuracy much better (about an order of magnitude) than is presently possible with standard data reduction methods, because the astrophysical null depth accuracy is no longer limited by the magnitude of the instrumental phase and intensity errors but by uncertainties on their probability distributions. This approach was tested on the sky with the two-aperture fiber nulling instrument mounted on the Palomar Hale telescope. Using our new data analysis approach alone—and no observations of calibrators—we find that error bars on the astrophysical null depth as low as a few 10–4 can be obtained in the near-infrared, which means that null depths lower than 10–3 can be reliably measured. This statistical analysis is not specific to our instrument and may be applicable to other interferometers. [less ▲]

Detailed reference viewed: 43 (6 ULg)
Full Text
See detailThe potential of rotating-baseline nulling interferometers operating within large single-telescope apertures
Serabyn, E.; Mennesson, B.; Martin, Stefan et al

in Danchi, W. C.; Delplancke, F.; Rajagopal, J. K. (Eds.) Optical and Infrared Interferometry II (2010, July 01)

The use of a rotating-baseline nulling interferometer for exoplanet detection was proposed several decades ago, but the technique has not yet been fully demonstrated in practice. Here we consider the ... [more ▼]

The use of a rotating-baseline nulling interferometer for exoplanet detection was proposed several decades ago, but the technique has not yet been fully demonstrated in practice. Here we consider the faint companion and exozodiacal disk detection capabilities of rotating-baseline nulling interferometers, such as are envisioned for space-based infrared nullers, but operating instead within the aperture of large single telescopes. In particular, a nulling interferometer on a large aperture corrected by a next-generation extreme adaptive optics system can provide deep interferometric contrasts, and also reach smaller angles (sub λ/D) than classical coronagraphs. Such rotating nullers also provide validation for an eventual space-based rotating-baseline nulling interferometer. As practical examples, we describe ongoing experiments with rotating nullers at Palomar and Keck, and consider briefly the case of the Thirty Meter Telescope. [less ▲]

Detailed reference viewed: 11 (2 ULg)
Full Text
See detailDevelopment of a statistical reduction method for the Palomar Fiber Nuller
Hanot, Charles ULg; Mennesson, Bertrand; Serabyn, Eugene et al

in Danchi, W. C.; Delplancke, F.; Rajagopal, J. K. (Eds.) Optical and Infrared Interferometry II (2010, July)

A unique statistical data analysis method has been developed for reducing nulling interferometry data. The idea is to make use of the statistical distributions of the fluctuating null depths and beam ... [more ▼]

A unique statistical data analysis method has been developed for reducing nulling interferometry data. The idea is to make use of the statistical distributions of the fluctuating null depths and beam intensities to retrieve the astrophysical null depth in the presence of fluctuations. The approach yields an accuracy much better than is possible with standard data reduction methods, because the accuracy of the null depth is not limited by the sizes of the phase and intensity errors but by the uncertainties on their statistical distributions. The result is an improvement in the instrumental null depth measurement limit of roughly an order of magnitude. We show in this paper that broadband null depths of 10[SUP]-4[/SUP] can be measured in the lab with our infrared Fiber Nuller without achromatic phase shifters. On sky results are also dramatically improved, with measured contrasts up to a couple of 10[SUP]-4[/SUP] with our instrument mounted on the Hale telescope at the Palomar Observatory. This statistical analysis is not specific to our instrument and may be applicable to other interferometers. [less ▲]

Detailed reference viewed: 24 (2 ULg)
Full Text
See detailThe development and applications of a ground-based fiber nulling coronagraph
Martin, Stefan; Serabyn, Eugene; Liewer, Kurt et al

in Optical and Infrared Interferometry (2008, July)

Detailed reference viewed: 27 (3 ULg)