References of "Martayan, C"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailA test field for Gaia. Radial velocity catalogue of stars in the South Ecliptic Pole
Frémat, Y.; Altmann, M.; Pancino, E. et al

in Astronomy and Astrophysics (2017), 597

Context. Gaia is a space mission that is currently measuring the five astrometric parameters, as well as spectrophotometry of at least 1 billion stars to G = 20.7 mag with unprecedented precision. The ... [more ▼]

Context. Gaia is a space mission that is currently measuring the five astrometric parameters, as well as spectrophotometry of at least 1 billion stars to G = 20.7 mag with unprecedented precision. The sixth parameter in phase space (i.e., radial velocity) is also measured thanks to medium-resolution spectroscopy that is being obtained for the 150 million brightest stars. During the commissioning phase, two fields, one around each ecliptic pole, have been repeatedly observed to assess and to improve the overall satellite performances, as well as the associated reduction and analysis software. A ground-based photometric and spectroscopic survey was therefore initiated in 2007, and is still running to gather as much information as possible about the stars in these fields. This work is of particular interest to the validation of the radial velocity spectrometer outputs. <BR /> Aims: The paper presents the radial velocity measurements performed for the Southern targets in the 12-17 R magnitude range on high- to mid-resolution spectra obtained with the GIRAFFE and UVES spectrographs. <BR /> Methods: Comparison of the South Ecliptic Pole (SEP) GIRAFFE data to spectroscopic templates observed with the HERMES (Mercator in La Palma, Spain) spectrograph enabled a first coarse characterisation of the 747 SEP targets. Radial velocities were then obtained by comparing the results of three different methods. <BR /> Results: In this paper, we present an initial overview of the targets to be found in the 1 sq. deg SEP region that was observed repeatedly by Gaia ever since its commissioning. In our representative sample, we identified one galaxy, six LMC S-stars, nine candidate chromospherically active stars, and confirmed the status of 18 LMC Carbon stars. A careful study of the 3471 epoch radial velocity measurements led us to identify 145 RV constant stars with radial velocities varying by less than 1 km s[SUP]-1[/SUP]. Seventy-eight stars show significant RV scatter, while nine stars show a composite spectrum. As expected, the distribution of the RVs exhibits two main peaks that correspond to Galactic and LMC stars. By combining [Fe/H] and log g estimates, and RV determinations, we identified 203 members of the LMC, while 51 more stars are candidate members. <BR /> Conclusions: This is the first systematic spectroscopic characterisation of faint stars located in the SEP field. During the coming years, we plan to continue our survey and gather additional high- and mid-resolution data to better constrain our knowledge on key reference targets for Gaia. Tables 1-3, 5, 7, and 8 are only available at the CDS via anonym- ous ftp to <A href="http://cdsarc.u-strasbg.fr">http://cdsarc.u-strasbg.fr</A> (<A href="http://130.79.128.5">http://130.79.128.5</A>) or via <A href="http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/597/A10">http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/597/A10</A>Based on data taken with the VLT-UT2 of the European Southern Observatory, programmes 084.D-0427(A), 086.D-0295(A), and 088.D-0305(A).Based on data obtained from the ESO Science Archive Facility under request number 84886.Based on data obtained with the HERMES spectrograph, installed at the Mercator Telescope, operated on the island of La Palma by the Flemish Community, at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias and supported by the Fund for Scientific Research of Flanders (FWO), Belgium, the Research Council of KU Leuven, Belgium, the Fonds National de la Recherche Scientifique (F.R.S.-FNRS), Belgium, the Royal Observatory of Belgium, the Observatoire de Genève, Switzerland and the Thüringer Landessternwarte Tautenburg, Germany. [less ▲]

Detailed reference viewed: 23 (4 ULg)
Full Text
Peer Reviewed
See detailGaia Data Release 1. Summary of the astrometric, photometric, and survey properties
Gaia Collaboration; Brown, A. G. A.; Vallenari, A. et al

in Astronomy and Astrophysics (2016), 595

Context. At about 1000 days after the launch of Gaia we present the first Gaia data release, Gaia DR1, consisting of astrometry and photometry for over 1 billion sources brighter than magnitude 20.7. <BR ... [more ▼]

Context. At about 1000 days after the launch of Gaia we present the first Gaia data release, Gaia DR1, consisting of astrometry and photometry for over 1 billion sources brighter than magnitude 20.7. <BR /> Aims: A summary of Gaia DR1 is presented along with illustrations of the scientific quality of the data, followed by a discussion of the limitations due to the preliminary nature of this release. <BR /> Methods: The raw data collected by Gaia during the first 14 months of the mission have been processed by the Gaia Data Processing and Analysis Consortium (DPAC) and turned into an astrometric and photometric catalogue. <BR /> Results: Gaia DR1 consists of three components: a primary astrometric data set which contains the positions, parallaxes, and mean proper motions for about 2 million of the brightest stars in common with the Hipparcos and Tycho-2 catalogues - a realisation of the Tycho-Gaia Astrometric Solution (TGAS) - and a secondary astrometric data set containing the positions for an additional 1.1 billion sources. The second component is the photometric data set, consisting of mean G-band magnitudes for all sources. The G-band light curves and the characteristics of 3000 Cepheid and RR Lyrae stars, observed at high cadence around the south ecliptic pole, form the third component. For the primary astrometric data set the typical uncertainty is about 0.3 mas for the positions and parallaxes, and about 1 mas yr[SUP]-1[/SUP] for the proper motions. A systematic component of 0.3 mas should be added to the parallax uncertainties. For the subset of 94 000 Hipparcos stars in the primary data set, the proper motions are much more precise at about 0.06 mas yr[SUP]-1[/SUP]. For the secondary astrometric data set, the typical uncertainty of the positions is 10 mas. The median uncertainties on the mean G-band magnitudes range from the mmag level to 0.03 mag over the magnitude range 5 to 20.7. <BR /> Conclusions: Gaia DR1 is an important milestone ahead of the next Gaia data release, which will feature five-parameter astrometry for all sources. Extensive validation shows that Gaia DR1 represents a major advance in the mapping of the heavens and the availability of basic stellar data that underpin observational astrophysics. Nevertheless, the very preliminary nature of this first Gaia data release does lead to a number of important limitations to the data quality which should be carefully considered before drawing conclusions from the data. [less ▲]

Detailed reference viewed: 25 (3 ULg)
Full Text
Peer Reviewed
See detailThe Gaia mission
Gaia Collaboration; Prusti, T.; de Bruijne, J. H. J. et al

in Astronomy and Astrophysics (2016), 595

Gaia is a cornerstone mission in the science programme of the EuropeanSpace Agency (ESA). The spacecraft construction was approved in 2006, following a study in which the original interferometric concept ... [more ▼]

Gaia is a cornerstone mission in the science programme of the EuropeanSpace Agency (ESA). The spacecraft construction was approved in 2006, following a study in which the original interferometric concept was changed to a direct-imaging approach. Both the spacecraft and the payload were built by European industry. The involvement of the scientific community focusses on data processing for which the international Gaia Data Processing and Analysis Consortium (DPAC) was selected in 2007. Gaia was launched on 19 December 2013 and arrived at its operating point, the second Lagrange point of the Sun-Earth-Moon system, a few weeks later. The commissioning of the spacecraft and payload was completed on 19 July 2014. The nominal five-year mission started with four weeks of special, ecliptic-pole scanning and subsequently transferred into full-sky scanning mode. We recall the scientific goals of Gaia and give a description of the as-built spacecraft that is currently (mid-2016) being operated to achieve these goals. We pay special attention to the payload module, the performance of which is closely related to the scientific performance of the mission. We provide a summary of the commissioning activities and findings, followed by a description of the routine operational mode. We summarise scientific performance estimates on the basis of in-orbit operations. Several intermediate Gaia data releases are planned and the data can be retrieved from the Gaia Archive, which is available through the Gaia home page. <A href="http://www.cosmos.esa.int/gaia">http://www.cosmos.esa.int/gaia</A> [less ▲]

Detailed reference viewed: 38 (5 ULg)
Full Text
Peer Reviewed
See detailThe Gaia-ESO Survey: The analysis of high-resolution UVES spectra of FGK-type stars
Smiljanic, R.; Korn, A. J.; Bergemann, M. et al

in Astronomy and Astrophysics (2014), 570

Context. The ongoing Gaia-ESO Public Spectroscopic Survey is using FLAMES at the VLT to obtain high-quality medium-resolution Giraffe spectra for about 10[SUP]5[/SUP] stars and high-resolution UVES ... [more ▼]

Context. The ongoing Gaia-ESO Public Spectroscopic Survey is using FLAMES at the VLT to obtain high-quality medium-resolution Giraffe spectra for about 10[SUP]5[/SUP] stars and high-resolution UVES spectra for about 5000 stars. With UVES, the Survey has already observed 1447 FGK-type stars. <BR /> Aims: These UVES spectra are analyzed in parallel by several state-of-the-art methodologies. Our aim is to present how these analyses were implemented, to discuss their results, and to describe how a final recommended parameter scale is defined. We also discuss the precision (method-to-method dispersion) and accuracy (biases with respect to the reference values) of the final parameters. These results are part of the Gaia-ESO second internal release and will be part of its first public release of advanced data products. Methods: The final parameter scale is tied to the scale defined by the Gaia benchmark stars, a set of stars with fundamental atmospheric parameters. In addition, a set of open and globular clusters is used to evaluate the physical soundness of the results. Each of the implemented methodologies is judged against the benchmark stars to define weights in three different regions of the parameter space. The final recommended results are the weighted medians of those from the individual methods. Results: The recommended results successfully reproduce the atmospheric parameters of the benchmark stars and the expected T[SUB]eff[/SUB]-log g relation of the calibrating clusters. Atmospheric parameters and abundances have been determined for 1301 FGK-type stars observed with UVES. The median of the method-to-method dispersion of the atmospheric parameters is 55 K for T[SUB]eff[/SUB], 0.13 dex for log g and 0.07 dex for [Fe/H]. Systematic biases are estimated to be between 50-100 K for T[SUB]eff[/SUB], 0.10-0.25 dex for log g and 0.05-0.10 dex for [Fe/H]. Abundances for 24 elements were derived: C, N, O, Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Mo, Ba, Nd, and Eu. The typical method-to-method dispersion of the abundances varies between 0.10 and 0.20 dex. Conclusions: The Gaia-ESO sample of high-resolution spectra of FGK-type stars will be among the largest of its kind analyzed in a homogeneous way. The extensive list of elemental abundances derived in these stars will enable significant advances in the areas of stellar evolution and Milky Way formation and evolution. Based on observations made with the ESO/VLT, at Paranal Observatory, under program 188.B-3002 (The Gaia-ESO Public Spectroscopic Survey, PIs Gilmore and Randich). Appendices are available in electronic form at <A href="http://www.aanda.org/10.1051/0004-6361/201423937/olm">http://www.aanda.org</A> [less ▲]

Detailed reference viewed: 13 (0 ULg)
Full Text
Peer Reviewed
See detailThe Gaia astrophysical parameters inference system (Apsis). Pre-launch description
Bailer-Jones, C. A. L.; Andrae, R.; Arcay, B. et al

in Astronomy and Astrophysics (2013), 559

The Gaia satellite will survey the entire celestial sphere down to 20th magnitude, obtaining astrometry, photometry, and low resolution spectrophotometry on one billion astronomical sources, plus radial ... [more ▼]

The Gaia satellite will survey the entire celestial sphere down to 20th magnitude, obtaining astrometry, photometry, and low resolution spectrophotometry on one billion astronomical sources, plus radial velocities for over one hundred million stars. Its main objective is to take a census of the stellar content of our Galaxy, with the goal of revealing its formation and evolution. Gaia's unique feature is the measurement of parallaxes and proper motions with hitherto unparalleled accuracy for many objects. As a survey, the physical properties of most of these objects are unknown. Here we describe the data analysis system put together by the Gaia consortium to classify these objects and to infer their astrophysical properties using the satellite's data. This system covers single stars, (unresolved) binary stars, quasars, and galaxies, all covering a wide parameter space. Multiple methods are used for many types of stars, producing multiple results for the end user according to different models and assumptions. Prior to its application to real Gaia data the accuracy of these methods cannot be assessed definitively. But as an example of the current performance, we can attain internal accuracies (RMS residuals) on F,G,K,M dwarfs and giants at G=15 (V=15-17) for a wide range of metallicites and interstellar extinctions of around 100K in effective temperature (Teff), 0.1mag in extinction (A0), 0.2dex in metallicity ([Fe/H]), and 0.25dex in surface gravity (logg). The accuracy is a strong function of the parameters themselves, varying by a factor of more than two up or down over this parameter range. After its launch in November 2013, Gaia will nominally observe for five years, during which the system we describe will continue to evolve in light of experience with the real data. [less ▲]

Detailed reference viewed: 42 (20 ULg)
Full Text
See detail2009: A Colliding-Wind Odyssey
Fahed, R.; Moffat, A. F. J.; Zorec, J. et al

in Astronomical Society of the Pacific Conference Series (2013, January 01)

We present the results from two optical spectroscopic campaigns on colliding-wind binaries (CWB) which both occurred in 2009. The first one was on WR 140 (WC7pd + O5.5fc), the archetype of CWB, which ... [more ▼]

We present the results from two optical spectroscopic campaigns on colliding-wind binaries (CWB) which both occurred in 2009. The first one was on WR 140 (WC7pd + O5.5fc), the archetype of CWB, which experienced periastron passage of its highly elliptical 8-year orbit in January. The WR 140 campaign consisted of a unique and constructive collaboration between amateur and professional astronomers and took place at half a dozen locations, including Teide Observatory, Observatoire de Haute Provence, Dominion Astrophysical Observatory, Observatoire du Mont-Mégantic and at several small private observatories. The second campaign was on a selection of 5 short-period WR + O binaries not yet studied for colliding-wind effects: WR 12 (WN8h), WR 21 (WN5o + O7 V), WR 30 (WC6 + O7.5 V), WR 31 (WN4o + O8), and WR 47 (WN6o + O5). The campaign took place at Leoncito Observatory, Argentina, during 1 month. We provide updated values of most of these systems for the orbital parameters, new estimates for the WR and O star masses and new constraints on the mass-loss rates and colliding wind geometry. [less ▲]

Detailed reference viewed: 11 (0 ULg)
Full Text
Peer Reviewed
See detailMultisite spectroscopic seismic study of the β Cep star V2052 Ophiuchi: inhibition of mixing by its magnetic field
Briquet, Maryline ULg; Neiner, C.; Aerts, C. et al

in Monthly Notices of the Royal Astronomical Society (2012), 427

We used extensive ground-based multisite and archival spectroscopy to derive observational constraints for a seismic modelling of the magnetic β Cep star V2052 Ophiuchi. The line-profile variability is ... [more ▼]

We used extensive ground-based multisite and archival spectroscopy to derive observational constraints for a seismic modelling of the magnetic β Cep star V2052 Ophiuchi. The line-profile variability is dominated by a radial mode (f1 = 7.148 46 d-1) and by rotational modulation (P_rot = 3.638 833 d). Two non-radial low-amplitude modes (f2 = 7.756 03 d-1 and f3 = 6.823 08 d-1) are also detected. The four periodicities that we found are the same as the ones discovered from a companion multisite photometric campaign and known in the literature. Using the photometric constraints on the degrees ℓ of the pulsation modes, we show that both f_2 and f_3 are prograde modes with (ℓ, m) = (4, 2) or (4, 3). These results allowed us to deduce ranges for the mass (M ∈ [8.2, 9.6] M_sun) and central hydrogen abundance (X_c ∈ [0.25, 0.32]) of V2052 Oph, to identify the radial orders n1 = 1, n2 = -3 and n3 = -2, and to derive an equatorial rotation velocity v_eq ∈ [71, 75] km s-1. The model parameters are in full agreement with the effective temperature and surface gravity deduced from spectroscopy. Only models with no or mild core overshooting (α_ov ∈ [0, 0.15] local pressure scale heights) can account for the observed properties. Such a low overshooting is opposite to our previous modelling results for the non-magnetic β Cep star θ Oph having very similar parameters, except for a slower surface rotation rate. We discuss whether this result can be explained by the presence of a magnetic field in V2052 Oph that inhibits mixing in its interior. [less ▲]

Detailed reference viewed: 27 (7 ULg)
Full Text
Peer Reviewed
See detailStochastic gravito-inertial modes discovered by CoRoT in the hot Be star HD 51452
Neiner, C.; Floquet, M.; Samadi, R. et al

in Astronomy and Astrophysics (2012), 546

Context. Be stars are rapidly rotating stars with a circumstellar decretion disk. They usually undergo pressure and/or gravity pulsation modes excited by the κ-mechanism, i.e. an effect of the opacity of ... [more ▼]

Context. Be stars are rapidly rotating stars with a circumstellar decretion disk. They usually undergo pressure and/or gravity pulsation modes excited by the κ-mechanism, i.e. an effect of the opacity of iron-peak elements in the envelope of the star. In the Milky Way, p-modes are observed in stars that are hotter than or equal to the B3 spectral type, while g-modes are observed at the B2 spectral type and cooler. <BR /> Aims: We observed a B0IVe star, HD 51452, with the high-precision, high-cadence photometric CoRoT satellite and high-resolution, ground-based HARPS and SOPHIE spectrographs to study its pulsations in great detail. We also used the lower resolution spectra available in the BeSS database. <BR /> Methods: We analyzed the CoRoT and spectroscopic data with several methods: Clean-NG, FreqFind, and a sliding window method. We also analyzed spectral quantities, such as the violet over red (V/R) emission variations, to obtain information about the variation in the circumstellar environment. We calculated a stellar structure model with the ESTER code to test the various interpretation of the results. <BR /> Results: We detect 189 frequencies of variations in the CoRoT light curve in the range between 0 and 4.5 c d[SUP]-1[/SUP]. The main frequencies are also recovered in the spectroscopic data. In particular we find that HD 51452 undergoes gravito-inertial modes that are not in the domain of those excited by the κ-mechanism. We propose that these are stochastic modes excited in the convective zones and that at least some of them are a multiplet of r-modes (i.e. subinertial modes mainly driven by the Coriolis acceleration). Stochastically excited gravito-inertial modes had never been observed in any star, and theory predicted that their very low amplitudes would be undetectable even with CoRoT. We suggest that the amplitudes are enhanced in HD 51452 because of the very rapid stellar rotation. In addition, we find that the amplitude variations of these modes are related to the occurrence of minor outbursts. <BR /> Conclusions: Thanks to CoRoT data, we have detected a new kind of pulsations in HD 51452, which are stochastically excited gravito-inertial modes, probably due to its very rapid rotation. These modes are probably also present in other rapidly rotating hot Be stars. The CoRoT space mission, launched on December 27, 2006, has been developed and is operated by CNES, with the contribution of Austria, Belgium, Brazil, ESA (RSSD, and Science Programs), Germany, and Spain. This work uses observations partly made with the HARPS instrument at the 3.6-m ESO telescope (La Silla, Chile) in the framework of the LP182.D-0356, as well as data obtained with Sophie at OHP and from the BeSS database.Table 3 is available in electronic form at <A href="http://www.aanda.org">http://www.aanda.org</A> [less ▲]

Detailed reference viewed: 52 (4 ULg)
Full Text
See detailThe Gaia-ESO Public Spectroscopic Survey
Gilmore, G.; Randich, S.; Asplund, M. et al

in The Messenger (2012), 147

The Gaia-ESO Public Spectroscopic Survey has begun and will obtain high quality spectroscopy of some 100000 Milky Way stars, in the field and in open clusters, down to magnitude 19, systematically ... [more ▼]

The Gaia-ESO Public Spectroscopic Survey has begun and will obtain high quality spectroscopy of some 100000 Milky Way stars, in the field and in open clusters, down to magnitude 19, systematically covering all the major components of the Milky Way. This survey will provide the first homogeneous overview of the distributions of kinematics and chemical element abundances in the Galaxy. The motivation, organisation and implementation of the Gaia-ESO Survey are described, emphasising the complementarity with the ESA Gaia mission. Spectra from the very first observing run of the survey are presented. [less ▲]

Detailed reference viewed: 191 (1 ULg)
Full Text
Peer Reviewed
See detailDetecting and modelling the magnetic field of the β Cephei star V 2052 Ophiuchi
Neiner, C.; Alecian, E.; Briquet, Maryline ULg et al

in Astronomy and Astrophysics (2012), 537

<BR /> Aims: Following the indirect detection of a magnetic field in the β Cephei star <ASTROBJ>V 2052 Oph</ASTROBJ> by Neiner and collaborators in 2003 with the Musicos spectropolarimeter, we remeasured ... [more ▼]

<BR /> Aims: Following the indirect detection of a magnetic field in the β Cephei star <ASTROBJ>V 2052 Oph</ASTROBJ> by Neiner and collaborators in 2003 with the Musicos spectropolarimeter, we remeasured the magnetic field of this star to attempt to directly confirm the detection of a magnetic field and study its configuration in greater detail. <BR /> Methods: We used the Narval spectropolarimeter installed at TBL (Pic du Midi, France), which is about 20 times more efficient than the Musicos spectropolarimeter. We applied the least-squares deconvolution (LSD) technique to various groups of lines to measure the circular polarisation of the light coming from <ASTROBJ>V 2052 Oph</ASTROBJ>. We synthesized the measured Stokes V profiles with a centred and off-centred dipole model. <BR /> Results: For the first time, we clearly detect the Zeeman signature in the Stokes V profiles of <ASTROBJ>V 2052 Oph</ASTROBJ> and thus directly prove the presence of a magnetic field in this star. The modulation with the rotation period is also confirmed and reflects an oblique dipole field. Thanks to the small error bars on the measurements, we are able to study the behaviour of different groups of lines and the centring of the dipole in the star. We find that the dipole is most likely off-centred along the magnetic axis and that He spots are present at the surface next to the magnetic axis. <BR /> Conclusions: We conclude that <ASTROBJ>V 2052 Oph</ASTROBJ> is a magnetic He-strong β Cep star, with a dipole field, probably off-centred, with B[SUB]pol[/SUB] ~ 400 G and He patches close to the magnetic poles. Based on observations obtained with the Narval spectropolarimeter at the Télescope Bernard Lyot, Observatoire du Pic du Midi, France. [less ▲]

Detailed reference viewed: 19 (5 ULg)
Full Text
Peer Reviewed
See detailSpectroscopy of the archetype colliding-wind binary WR 140 during the 2009 January periastron passage
Fahed, R.; Moffat, A. F. J.; Zorec, J. et al

in Monthly Notices of the Royal Astronomical Society (2011), 418

We present the results from the spectroscopic monitoring of WR 140 (WC7pd + O5.5fc) during its latest periastron passage in 2009 January. The observational campaign consisted of a constructive ... [more ▼]

We present the results from the spectroscopic monitoring of WR 140 (WC7pd + O5.5fc) during its latest periastron passage in 2009 January. The observational campaign consisted of a constructive collaboration between amateur and professional astronomers. It took place at six locations, including Teide Observatory, Observatoire de Haute Provence, Dominion Astrophysical Observatory and Observatoire du Mont Mégantic. WR 140 is known as the archetype of colliding-wind binaries and it has a relatively long period (?8 yr) and high eccentricity (?0.9). We provide updated values for the orbital parameters, new estimates for the WR and O star masses and new constraints on the mass-loss rates and colliding-wind geometry. [less ▲]

Detailed reference viewed: 20 (2 ULg)
See detailGaia spectroscopy: processing, performances and scientific returns
Katz, D.; Cropper, M.; Meynadier, F. et al

in EAS Publication Series (2011, February 01)

During the five years of the mission, the Gaia spectrograph, the Radial Velocity Spectrometer (RVS) will repeatedly survey the celestial sphere down to magnitude V ~ 17-18. This talk presents: (i) the ... [more ▼]

During the five years of the mission, the Gaia spectrograph, the Radial Velocity Spectrometer (RVS) will repeatedly survey the celestial sphere down to magnitude V ~ 17-18. This talk presents: (i) the system which is currently developed within the Gaia Data Processing and Analysis Consortium (DPAC) to reduce and calibrate the spectra and to derive the radial and rotational velocities, (ii) the RVS expected performances and (iii) scientific returns. [less ▲]

Detailed reference viewed: 33 (4 ULg)
See detailHot stars survey with the GAIA space mission
Lobel, A.; Liu, C.; Frémat, Y. et al

Poster (2009)

Detailed reference viewed: 33 (11 ULg)
See detailEmission line stars in the Milky Way with the GAIA space mission
Martayan, C.; Frémat, Y.; Blomme, R. et al

Poster (2009)

Detailed reference viewed: 9 (0 ULg)
See detailMassive stars and emission-line stars with GAIA
Blomme, Ronny; Frémat, Y.; Lobel, Alex et al

Poster (2009)

Detailed reference viewed: 16 (1 ULg)
Full Text
Peer Reviewed
See detailFirst asteroseismic results from CoRoT
Michel, Eric; Baglin, A.; Weiss, W. W. et al

in Communications in Asteroseismology (2008), 156

About one year after the end of the first observational run and six months after the first CoRoT data delivery, we comment the data exploitation progress for different types of stars. We consider first ... [more ▼]

About one year after the end of the first observational run and six months after the first CoRoT data delivery, we comment the data exploitation progress for different types of stars. We consider first results to illustrate how these data of unprecedented quality shed a new light on the field of stellar seismology. [less ▲]

Detailed reference viewed: 49 (18 ULg)
Full Text
See detailRadial velocities with the Gaia RVS spectrometer
Viala, Y. P.; Blomme, R.; Damerdji, Yassine ULg et al

in Charbonnel, C.; Combes, F.; Samadi, R. (Eds.) SF2A-2008; Annual Meeting of the French Society of Astronomy (2008, November 01)

Four different method are used to derive radial velocities from spectra observed by the Gaia Radial Velocity Spectrometer (RVS). They are briefly presented here together with very preliminary results.

Detailed reference viewed: 29 (3 ULg)
Full Text
See detailThe Gaia satellite: a tool for Emission Line Stars and Hot Stars
Martayan, C.; Frémat, Y.; Blomme, R. et al

in SF2A-2008 (2008, November 01)

The Gaia satellite will be launched at the end of 2011. It will observe at least 1 billion stars, and among them several million emission line stars and hot stars. Gaia will provide parallaxes for each ... [more ▼]

The Gaia satellite will be launched at the end of 2011. It will observe at least 1 billion stars, and among them several million emission line stars and hot stars. Gaia will provide parallaxes for each star and spectra for stars till V magnitude equal to 17. After a general description of Gaia, we present the codes and methods, which are currently developed by our team. They will provide automatically the astrophysical parameters and spectral classification for the hot and emission line stars in the Milky Way and other close local group galaxies such as the Magellanic Clouds. [less ▲]

Detailed reference viewed: 34 (6 ULg)
Full Text
Peer Reviewed
See detailThe spectra of massive stars with GAIA
Bouret, J C; Lanz, T; Frémat, Y et al

in Revista Mexicana de Astronomía y Astrofísica (2008), 33

Detailed reference viewed: 11 (0 ULg)