References of "Malengreaux, Charline"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailHow to correctly determine the kinetics of a photocatalytic degradation reaction?
Pirard, Sophie ULg; Malengreaux, Charline ULg; Toye, Dominique ULg et al

in Chemical Engineering Journal (2014), 249

Detailed reference viewed: 24 (8 ULg)
Peer Reviewed
See detailModification of Conductivity, Superhydrophilicity and Photocatalytic Activity of TiO2 Thin Films Through Carbon Nanotubes Doping
Léonard, Géraldine ULg; Remy, Simon; Malengreaux, Charline ULg et al

Poster (2014, July 15)

In this work, a superhydrophilic and photocatalytic material allowing to reduce the accumulation of electrostatic charges is developed. The superhydrophilicity and photocatalytic activity of TiO2 films ... [more ▼]

In this work, a superhydrophilic and photocatalytic material allowing to reduce the accumulation of electrostatic charges is developed. The superhydrophilicity and photocatalytic activity of TiO2 films provide the “easy-to-clean” property. Indeed, superhydrophilicity induces a very low contact angle between TiO2 and water leading to the formation of a water film at the surface of the material. The photocatalytic activity, responsible for the pollutant decomposition, is explained by the excitation of the semiconductor under UV light leading to the formation of electron-hole pairs. The electrical conductivity of semiconductor TiO2 is very low leading to the accumulation of electrostatic charges and so the surface becomes a dust trap. Multi-walled carbon nanotubes (MWCNTs) are electrical conductors and their introduction in TiO2 could increase the conductivity. The incorporation of MWCNTs can modify the superhydrophilicity of TiO2. The photoactivity can be improved by reducing the electron-hole recombination rate. MWCNTs play a role in electron transfer and allow to decrease the recombination of electron-hole pairs. Two sol-gel syntheses were studied in alcohol and water respectively. In the alcoholic medium, monolayer films are obtained by dip-coating on alkaline free glass and calcined at 300, 400 or 500°C. The thermal treatment allows to crystallize TiO2 in the anatase form. In the aqueous synthesis, monolayer film are obtained by dip-coating on alkaline free glass. The TiO2 shows already the anatase structure. The characterizations of the samples have confirmed the nanotube presence in the aqueous synthesis, and in the alcoholic synthesis at 300°C and 400°C but not at 500°C. The highest conductivity is obtained from the syntheses in alcohol and the calcination at 300°C. That sample does not exhibit a high photoactivity because of its poor crystallinity. The films without MWCNTs are superhydrophilic but the contact angle increase with the incorporation of MWCNTs. The superhydrophilicity is lost with MWCNTs introduction. MWCNTs increase the roughness, the thickness and the electron transfer of the TiO2 matrix. This induces an enhancement of the photoactivity under UV. The comparison between the two syntheses shows that the alcoholic synthesis (400°C) is the best for pure film. When MWCNTs are introduced, the improvement is higher in the case of aqueous synthesis than in the case of alcoholic synthesis. The aqueous synthesis leads to more active photocatalysts than the alcoholic synthesis. [less ▲]

Detailed reference viewed: 23 (1 ULg)
Full Text
Peer Reviewed
See detailKinetic study of 4-nitrophenol photocatalytic degradation over a Zn2+ doped TiO2 catalyst prepared through an environmentally friendly aqueous sol–gel process
Malengreaux, Charline ULg; Pirard, Sophie ULg; Bartlett, John et al

in Chemical Engineering Journal (2014), 245

A kinetic study of the photocatalytic degradation of 4-nitrophenol (4-NP) under UV–visible light (330 nm < k < 800 nm) has been performed via a rigorous chemical engineering approach over a Zn2+ doped ... [more ▼]

A kinetic study of the photocatalytic degradation of 4-nitrophenol (4-NP) under UV–visible light (330 nm < k < 800 nm) has been performed via a rigorous chemical engineering approach over a Zn2+ doped TiO2 catalyst prepared through an environmentally friendly aqueous sol–gel process. The experiments have been performed at three temperatures to enable the global activation energy to be estimated. The influence of the illumination intensity has also been considered. The possibility of internal and external diffusion limitations has been studied and the results obtained demonstrated that there is no diffusional limitation during the photocatalytic degradation of the 4-NP using the selected catalyst. Therefore, the apparent specific reaction rate measured corresponds to the actual reaction rate of the chemical reaction. Parameter adjustments show that the kinetic model that provides the best fit to the experimental data corresponds to a first order reaction. A sequence of elementary steps has been considered and a pseudo-steady state approach based upon the stationary state hypothesis for reaction intermediates has been applied to obtain a kinetic rate expression in agreement with the experimental data. The mean values of the reaction rate constant found at 283 K, 288 K and 293 K are respectively equal to k1 = 0.094 ± 0.003 m3 h- 1 kgcatalyst- 1; k2 = 0.119 ± 0.004 m3 h- 1 kgcatalyst- 1 and k3 = 0.150 ± 0.023 m3 h- 1 kg catalyst-1 and the global activation energy of the degradation reaction was evaluated as 40 kJ mol-1. A phenomenological kinetic mechanism is proposed to describe the reaction at a molecular scale. Finally, statistical validations and residuals analysis have been performed to confirm that the first order model is suitable to represent the 4-NP photocatalytic degradation over time. Such studies are essential to design a reactor for water pollutant degradation on an industrial scale. [less ▲]

Detailed reference viewed: 31 (12 ULg)
Full Text
Peer Reviewed
See detailVisible-light photo-activity of alkali metal doped ZnO
Benhebal, Hadj; Chaib, Messaoud; Malengreaux, Charline ULg et al

in Journal of the Taiwan Institute of Chemical Engineers (2014), 45(1), 249-253

In order to utilize visible light more efficiently in the field of photocatalysis, Li, Na and K-doped ZnO nanoparticles were prepared using a sol–gel method. The obtained samples were characterized by BET ... [more ▼]

In order to utilize visible light more efficiently in the field of photocatalysis, Li, Na and K-doped ZnO nanoparticles were prepared using a sol–gel method. The obtained samples were characterized by BET surface area measurements, X-ray diffraction, scanning electron microscopy and UV–vis analysis. The photocatalytic activity of the photocatalysts was evaluated for the degradation of p-nitrophenol (p-NP) under visible light irradiation. It has been observed that these photocatalysts could be a promising photocatalyst for degradation of organic molecules as compared to transition metal doped ZnO under visible light. Li-doped ZnO is the most active photocatalyst and shows high photocatalytic activity for the degradation of p-nitrophenol (p-NP). The enhanced photocatalytic activity of Li-doped ZnO is mainly due to the electron trapping by lithium metal ions, small particle size, large surface area, and high surface roughness of the photocatalysts. [less ▲]

Detailed reference viewed: 70 (12 ULg)
Full Text
See detailModified TiO2-based Photocatalytic Films and Powders produced by Aqueous and Non-Aqueous Sol-Gel Processes for Water Purification
Malengreaux, Charline ULg

Doctoral thesis (2013)

Summary Two major research goals have been proposed for this thesis. The first goal concerns the development of photocatalysts in the shape of thin films coated on glass substrates which includes (i) the ... [more ▼]

Summary Two major research goals have been proposed for this thesis. The first goal concerns the development of photocatalysts in the shape of thin films coated on glass substrates which includes (i) the development of a sol-gel chemistry suitable for the production of stable colloidal suspensions of TiO2 particles, (ii) the optimization of the deposition method and (iii) the development of an experimental device to measure the photocatalytic activity of the films. The second objective is the development of innovative non-aqueous and aqueous sol-gel routes, including the development of new methods for the introduction of dopants as well as the photocatalytic testing of the resulting materials. Two original non-aqueous sol-gel processes involving respectively, an in situ production of water and the controlled addition of a small amount of water, have been developed to produce a series of stable colloidal suspensions of TiO2 particles (sols). From those sols, transparent, adherent, homogeneous thin films have been produced using an optimized dip-coating deposition method and have been proven to be photocatalytically active for the degradation of an organic pollutant in aqueous solution. The photocatalytic activity of the films has been improved through an increase of their roughness thanks to the addition of an organic additive into the sol, leading to an increased active surface involved into the photocatalytic reaction. A mathematical model allowing the rigorous evaluation of the kinetic parameters of the photocatalytic reaction taking into account the influence of the variation of the volume inside the batch photoreactor has been developed. The equations have been established in the case of a photocatalytic powder homogeneously dispersed in the pollutant solution, and in the case of a photocatalytic thin film placed at the bottom of the reactor. The particular case of a first order reaction has been treated and the error on the reaction rate constant induced by neglecting the volume variation has been quantified. An environmentally-friendly aqueous sol-gel process for producing undoped and Cu2+, Ni2+, Zn2+, Pb2+, Fe3+, Cr3+, La3+ or Eu3+ single-doped as well as La3+- Fe3+ and Eu3+- Fe3+ co-doped TiO2 bulk photocatalysts composed of nanocrystallites of anatase and exhibiting a remarkably high photocatalytic activity without requiring any calcination step has been developed. Different effects of the metal ion dopant on the photocatalytic activity have been observed and discussed according to the dopant nature and content. A kinetic study of the photocatalytic degradation of a model pollutant (4-nitrophenol) in aqueous solution under UV-Visible light (330 nm < λ < 800 nm) has been performed over a promising TiO2-Zn2+ doped catalyst. Statistical validations have confirmed the suitability of the phenomenological reaction rate model developed to represent the 4-nitrophenol photocatalytic degradation over time. [less ▲]

Detailed reference viewed: 97 (29 ULg)
See detailDevelopment of Highly Active doped Titania Photocatalysts by Aqueous Sol-Gel Processing
Malengreaux, Charline ULg; Douven, Sigrid ULg; Poelman, Dirk et al

Poster (2012, December)

Detailed reference viewed: 37 (15 ULg)
See detailDevelopment of Highly Active doped Titania Photocatalysts by Aqueous Sol-Gel Processing
Malengreaux, Charline ULg; Douven, Sigrid ULg; Poelman, Dirk et al

Poster (2012, November)

Detailed reference viewed: 27 (13 ULg)