References of "Maillard, Catherine"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailHistology of the vaginal wall in women with pelvic organ prolapse: a literature review.
DE LANDSHEERE, Laurent ULg; Munaut, Carine ULg; Richelle, Betty ULg et al

in International Urogynecology Journal (2013), 24(12), 2011-20

INTRODUCTION AND HYPOTHESIS: The pathophysiology of pelvic organ prolapse (POP) is incompletely understood. The purpose of this study is to describe the current knowledge about histology of the vaginal ... [more ▼]

INTRODUCTION AND HYPOTHESIS: The pathophysiology of pelvic organ prolapse (POP) is incompletely understood. The purpose of this study is to describe the current knowledge about histology of the vaginal wall and its possible involvement in the pathogenesis of pelvic organ prolapse. METHODS: Eligible studies were selected through a MEDLINE search covering January 1986 to December 2012. The research was limited to English-language publications. RESULTS: Investigations of changes in the vaginal tissue that occur in women with genital prolapse are currently still limited and produced contrary results. The heterogeneity of the patients and the control groups in terms of age, parity and hormonal status, of the localization of biopsies and the histological methods as well as the lack of validation of the quantification procedures do not allow clear and definitive conclusions to be drawn. CONCLUSIONS: This review shows that current knowledge of the histological changes observed in women with POP are inconclusive and relatively limited. More studies are needed in this specific field to better understand the mechanisms that lead to POP. [less ▲]

Detailed reference viewed: 37 (8 ULg)
Full Text
See detailLymphangiogenesis and extracellular matrix remodeling
Erpicum, Charlotte ULg; Detry, Benoît ULg; Paupert, Jenny ULg et al

Conference (2013, January 28)

Detailed reference viewed: 33 (8 ULg)
Full Text
Peer Reviewed
See detailSunitinib inhibits inflammatory corneal lymphangiogenesis.
Detry, Benoît ULg; Blacher, Silvia ULg; Erpicum, Charlotte ULg et al

in Investigative Ophthalmology & Visual Science (2013), 54(5), 3082-93

PURPOSE: To evaluate the antilymphangiogenic potential of multi-target tyrosine kinase inhibitor sunitinib in corneal neovascularization (NV). METHODS: Inflammatory corneal NV was induced by thermal ... [more ▼]

PURPOSE: To evaluate the antilymphangiogenic potential of multi-target tyrosine kinase inhibitor sunitinib in corneal neovascularization (NV). METHODS: Inflammatory corneal NV was induced by thermal cauterization applied in the central cornea of mice, to which sunitinib malate was daily administered by gavage or not. At days 6, 11, or 17 post cauterization, lymphatic and blood vessels, as well as inflammatory cells were immunostained and quantified in whole-mounted corneas. RT-PCRs were performed to evidence VEGF-A, VEGF-C, VEGF-D, placental growth factor (PlGF), and soluble vascular endothelial growth factor receptor (VEGFR)-1 and -2 (sVEGFR-1, sVEGFR-2) expressions. Macrophages were isolated from mice peritoneal cavity following thioglycollate injection to produce conditioned medium. The effects of sunitinib were evaluated in vitro in the aortic and lymphatic ring assays in the presence or not of macrophage conditioned medium. RESULTS: Sunitinib treatment drastically reduced pathologic corneal lymphangiogenesis and angiogenesis. Reduced F4/80+ cell infiltration was evidenced in sunitinib-treated mice and was associated to decreased VEGF-A (by 50%, P < 0.01) and VEGF-C (by 35%, P < 0.01) expressions, while VEGF-D and sVEGFR-2 expressions were not affected. In vitro, sunitinib dose-dependently inhibited aortic ring outgrowth, but failed to affect lymphangiogenesis in the lymphatic ring assay. However, macrophage conditioned medium-enhanced angiogenesis and lymphangiogenesis were both strongly counteracted by sunitinib treatment. Mechanistically, sunitinib blocked VEGFR-2 phosphorylation induced by VEGF-A released by macrophages. CONCLUSIONS: Sunitinib exerts antihemangiogenic and antilymphangiogenic effects in vivo by reducing F4/80+ cell recruitment and interacting with their released factors. [less ▲]

Detailed reference viewed: 22 (6 ULg)
Full Text
See detailUnderstanding angiogenesis through novel epigenetic modulators
Shiva Shankar, Thammadihalli Veerasangaiah ULg; Sulka, Béatrice; Blacher, Silvia ULg et al

Scientific conference (2012, June 22)

DNA methylation and histone deacetylation are two key epigenetic modifications that play central role in regulation of gene expression. Several studies have shown that histone deacetylases (HDAC) and DNA ... [more ▼]

DNA methylation and histone deacetylation are two key epigenetic modifications that play central role in regulation of gene expression. Several studies have shown that histone deacetylases (HDAC) and DNA methyltransferases (DNMT) inhibitors are potent anti-angiogenic compounds. Though combination of HDAC and DNMT inhibitors are now being examined in clinical trials of hematological malignancies, little work has been done to understand the effect of this combination on physiological and tumoral angiogenesis. We have designed and tested a family of twin drugs with intrinsic HDAC and DNMT inhibitory activities in relevant models of angiogenesis in vitro (Human Umbilical Vein Endothelial Cells – HUVEC and aortic ring) and in vivo (chick chorioallantoic membrane and Zebrafish). We have identified a lead compound having quantifiable anti-angiogenic effect without cytotoxicity affecting global histone acetylation and DNA methylation levels. In order to elucidate its anti-angiogenic mechanism, we characterized gene expression pattern simultaneously with the methylation profile of HUVEC cells treated with the lead compound and reference epigenetic modulators. This approach based on parallel microarray analyses permitted us to underscore a list of genes exclusively affected by the lead compound but not by other HDAC or DNMT inhibitors. These genes were then analyzed using the Ingenuity Pathway software revealing potential involvement of a subset of genes in angiogenesis. Our present work is focused on exploring the exact role of these genes on angiogenesis using RNA silencing and vectors cloned with genes of interest. We are using these novel epigenetic modulators as a tool to understand the regulatory mechanism of angiogenesis and to develop effective approaches to treat cancer. [less ▲]

Detailed reference viewed: 63 (8 ULg)
Full Text
Peer Reviewed
See detailMatrix metalloproteinase-2 governs lymphatic vessel formation as an interstitial collagenase.
Detry, Benoît ULg; Erpicum, Charlotte ULg; Paupert, Jenny ULg et al

in Blood (2012), 119(21), 5048-56

Lymphatic dysfunctions are associated with several human diseases, including lymphedema and metastatic spread of cancer. Although it is well recognized that lymphatic capillaries attach directly to ... [more ▼]

Lymphatic dysfunctions are associated with several human diseases, including lymphedema and metastatic spread of cancer. Although it is well recognized that lymphatic capillaries attach directly to interstitial matrix mainly composed of fibrillar type I collagen, the interactions occurring between lymphatics and their surrounding matrix have been overlooked. In this study, we demonstrate how matrix metalloproteinase (MMP)–2 drives lymphatic morphogenesis through Mmp2-gene ablation in mice, mmp2 knockdown in zebrafish and in 3D-culture systems, and through MMP2 inhibition. In all models used in vivo (3 murine models and thoracic duct development in zebrafish) and in vitro (lymphatic ring and spheroid assays), MMP2 blockage or down-regulation leads to reduced lymphangiogenesis or altered vessel branching. Our data show that lymphatic endothelial cell (LEC) migration through collagen fibers is affected by physical matrix constraints (matrix composition, density and cross-linking). Transmission electron microscopy (TEM) and confocal reflection microscopy using DQ-collagen highlight the contribution of MMP2 to mesenchymal-like migration of LEC associated with collagen fiber remodeling. Our findings provide new mechanistic insight into how LEC negotiate an interstitial type I collagen barrier and reveal an unexpected MMP2-driven collagenolytic pathway for lymphatic vessel formation and morphogenesis. [less ▲]

Detailed reference viewed: 154 (64 ULg)
Full Text
Peer Reviewed
See detailModelling Lymphatic and blood capillary patterning
Bruyere, Françoise; Maillard, Catherine ULg; Erpicum, Charlotte ULg et al

in Davies, Jamie (Ed.) Replacing Animal Models, a practical guide to creating and using culture-based biomimetic alternatives (2012)

Angiogenesis and lymphangiogenesis, the formation of new blood or lymphatic vessels from preexisting ones, are important biological processes associated with diverse physiological processes, tissue repair ... [more ▼]

Angiogenesis and lymphangiogenesis, the formation of new blood or lymphatic vessels from preexisting ones, are important biological processes associated with diverse physiological processes, tissue repair and pathologies, such as cancer. Much progress has been made in recent years in identifying molecules specifically expressed on blood and lymphatic vessels and in the setting up of models of angiogenesis and lymphangiogenesis. In this review, we describe the most common in vitro models of (lymph)angiogenesis that have proven suitable for investigating angiogenic and lymphatic biology, and offer alternatives to animal experimentation. Their rationales, limitations and applications in biomedical research are discussed. A special emphasis will be given on ring assays that provide excellent recapitulation of various steps of (lymph)angiogenesis. The aortic ring assay has become the most widely used methods to study in vitro angiogenesis, and the recently set up lymphatic ring assay provides the opportunity to extend the in vitro studies to lymphangiogenesis. [less ▲]

Detailed reference viewed: 20 (7 ULg)
Full Text
Peer Reviewed
See detailDigging deeper into lymphatic vessel formation in vitro and in vivo
Detry, Benoît ULg; Bruyère, F.; Erpicum, Charlotte ULg et al

in BMC Cell Biology (2011), 12

Background Abnormal lymphatic vessel formation (lymphangiogenesis) is associated with different pathologies such as cancer, lymphedema, psoriasis and graft rejection. Lymphatic vasculature displays ... [more ▼]

Background Abnormal lymphatic vessel formation (lymphangiogenesis) is associated with different pathologies such as cancer, lymphedema, psoriasis and graft rejection. Lymphatic vasculature displays distinctive features than blood vasculature, and mechanisms underlying the formation of new lymphatic vessels during physiological and pathological processes are still poorly documented. Most studies on lymphatic vessel formation are focused on organism development rather than lymphangiogenic events occurring in adults. We have here studied lymphatic vessel formation in two in vivo models of pathological lymphangiogenesis (corneal assay and lymphangioma). These data have been confronted to those generated in the recently set up in vitro model of lymphatic ring assay. Ultrastructural analyses through Transmission Electron Microscopy (TEM) were performed to investigate tube morphogenesis, an important differentiating process observed during endothelial cell organization into capillary structures. [less ▲]

Detailed reference viewed: 61 (18 ULg)
See detailFrom the Clinics to the Bench and back to the Clinics: design of a medical treatment for Cervical Intraepithelial Neoplasia (CIN)
Jost, Maud; Frankenne, Francis; Maillard, Catherine ULg et al

Conference (2011, May 20)

Detailed reference viewed: 27 (12 ULg)
Full Text
See detailNovel HDAC/DNMT Twin inhibitors interfere with angiogenesis
Shiva Shankar, Thammadihalli Veerasangaiah ULg; Sulka, Béatrice ULg; Blacher, Silvia ULg et al

Poster (2011, January 31)

DNA methylation and histone deacetylation are two key epigenetic modifications that play central role in regulation of gene expression. Several studies have shown that histone deacetylases (HDAC) and DNA ... [more ▼]

DNA methylation and histone deacetylation are two key epigenetic modifications that play central role in regulation of gene expression. Several studies have shown that histone deacetylases (HDAC) and DNA methyltransferases (DNMT) inhibitors are potent anti-angiogenic compounds. Though combination of HDAC and DNMT inhibitors are now being examined in clinical trials of hematological malignancies, little work has been done to understand the effect of this combination on physiological and tumoral angiogenesis. We have designed and tested a family of twin drugs with intrinsic HDAC and DNMT inhibitory activities in relevant models of angiogenesis in vitro (Human Umbilical Vein Endothelial Cells – HUVEC and aortic ring) and in vivo (chick chorioallantoic membrane and Zebrafish). We have identified a lead compound having quantifiable anti-angiogenic effect without cytotoxicity affecting global histone acetylation and DNA methylation levels. In order to elucidate its anti-angiogenic mechanism, we characterized gene expression pattern simultaneously with the methylation profile of HUVEC cells treated with the lead compound and reference epigenetic modulators. This approach based on parallel microarray analyses permitted us to underscore a list of genes exclusively affected by the lead compound but not by other HDAC or DNMT inhibitors. These genes were then analyzed using the Ingenuity Pathway software revealing potential involvement of a subset of genes in angiogenesis. Our present aim is to validate the expression levels of a series of genes with respect to epigenetic mechanisms (histone modifications and DNA methylation). Finally, the biological relevance of the target genes will be explored by RNA silencing. Hence, we are using these novel epigenetic modulators as a tool to understand the regulatory mechanism of angiogenesis and to develop effective approaches to treat cancer. [less ▲]

Detailed reference viewed: 70 (17 ULg)
Full Text
Peer Reviewed
See detailNovel HDAC/DNMT Twin Inhibitors Interfere with Angiogenesis
Shiva Shankar, Thammadihalli Veerasangaiah ULg; Sulka, Béatrice ULg; Blacher, Silvia ULg et al

Poster (2011)

DNA methylation and histone deacetylation are two key epigenetic modifications that play central role in regulation of gene expression. Several studies have shown that histone deacetylases (HDAC) and DNA ... [more ▼]

DNA methylation and histone deacetylation are two key epigenetic modifications that play central role in regulation of gene expression. Several studies have shown that histone deacetylases (HDAC) and DNA methyltransferases (DNMT) inhibitors are potent anti-angiogenic compounds. Though combination of HDAC and DNMT inhibitors are now being examined in clinical trials of hematological malignancies, little work has been done to understand the effect of this combination on physiological and tumoral angiogenesis. We have designed and tested a family of twin drugs with intrinsic HDAC and DNMT inhibitory activities in relevant models of angiogenesis in vitro (Human Umbilical Vein Endothelial Cells – HUVEC and aortic ring) and in vivo (chick chorioallantoic membrane and Zebrafish). We have identified a lead compound having quantifiable anti-angiogenic effect without cytotoxicity affecting global histone acetylation and DNA methylation levels. In order to elucidate its anti-angiogenic mechanism, we characterized gene expression pattern simultaneously with the methylation profile of HUVEC cells treated with the lead compound and reference epigenetic modulators. This approach based on parallel microarray analyses permitted us to underscore a list of genes exclusively affected by the lead compound but not by other HDAC or DNMT inhibitors. These genes were then analyzed using the Ingenuity Pathway software revealing potential involvement of a subset of genes in angiogenesis. Our present aim is to validate the expression levels of a series of genes with respect to epigenetic mechanisms (histone modifications and DNA methylation). Finally, the biological relevance of the target genes will be explored by RNA silencing. Hence, we are using these novel epigenetic modulators as a tool to understand the regulatory mechanism of angiogenesis and to develop effective approaches to treat cancer. [less ▲]

Detailed reference viewed: 189 (54 ULg)
Full Text
Peer Reviewed
See detailUnimpeded skin carcinogenesis in K14-HPV16 transgenic mice deficient for plasminogen activator inhibitor
Masset, Anne; Maillard, Catherine ULg; Sounni, Nor Eddine ULg et al

in International Journal of Cancer = Journal International du Cancer (2011), 128(2), 283-93

Angiogenesis, extracellular matrix remodeling and cell migration are associated with cancer progression and involve at least, the plasminogen activating system and its main physiological inhibitor, the ... [more ▼]

Angiogenesis, extracellular matrix remodeling and cell migration are associated with cancer progression and involve at least, the plasminogen activating system and its main physiological inhibitor, the plasminogen activator inhibitor-1 (PAI-1). Considering the recognized importance of PAI-1 in the regulation of tumor angiogenesis and invasion in murine models of skin tumor transplantation, we explored the functional significance of PAI-1 during early stages of neoplastic progression in the transgenic mouse model of multistage epithelial carcinogenesis (K14-HPV16 mice). We have studied the effect of genetic deletion of PAI-1 on inflammation, angiogenesis, lymphangiogenesis, as well as tumor progression. In this model, PAI-1 deficiency neither impaired keratinocyte hyperproliferation or tumor development, nor affected the infiltration of inflammatory cells and development of angiogenic or lymphangiogenic vasculature. We are reporting evidence for concomitant lymphangiogenic and angiogenic switches independent to PAI-1 status. Taken together, these data indicate that PAI-1 is not rate limiting for neoplastic progression and vascularization during premalignant progression, or that there is a functional redundancy between PAI-1 and other tumor regulators, masking the effect of PAI-1 deficiency in this long-term model of multi-stage epithelial carcinogenesis. [less ▲]

Detailed reference viewed: 127 (27 ULg)
Full Text
Peer Reviewed
See detailThe Angiostatic Protein 16K Human Prolactin Significantly Prevents Tumor-Induced Lymphangiogenesis by Affecting Lymphatic Endothelial Cells.
Kinet, Virginie; Castermans, K; Herkenne, Stéphanie ULg et al

in Endocrinology (2011)

The 16-kDa angiostatic N-terminal fragment of human prolactin (16K hPRL) has been reported to be a new potent anticancer compound. This protein has already proven its efficiency in several mouse tumor ... [more ▼]

The 16-kDa angiostatic N-terminal fragment of human prolactin (16K hPRL) has been reported to be a new potent anticancer compound. This protein has already proven its efficiency in several mouse tumor models in which it prevented tumor-induced angiogenesis and delayed tumor growth. In addition to angiogenesis, tumors also stimulate the formation of lymphatic vessels, which contribute to tumor cell dissemination and metastasis. However, the role of 16K hPRL in tumor-induced lymphangiogenesis has never been investigated. We establish in vitro that 16K hPRL induces apoptosis and inhibits proliferation, migration, and tube formation of human dermal lymphatic microvascular endothelial cells. In addition, in a B16F10 melanoma mouse model, we found a decreased number of lymphatic vessels in the primary tumor and in the sentinel lymph nodes after 16K hPRL treatment. This decrease is accompanied by a significant diminished expression of lymphangiogenic markers in primary tumors and sentinel lymph nodes as determined by quantitative RT-PCR. These results suggest, for the first time, that 16K hPRL is a lymphangiostatic as well as an angiostatic agent with antitumor properties. [less ▲]

Detailed reference viewed: 62 (6 ULg)
Full Text
Peer Reviewed
See detailNovel HDAC/DNMT twin inhibitors interfere with angiogenesis
Shiva Shankar, Thammadihalli Veerasangaiah ULg; Sulka, Béatrice; Blacher, Silvia ULg et al

Poster (2010)

DNA methylation and histone deacetylation are two key epigenetic modifications that play central role in regulation of gene expression. Several studies have shown that histone deacetylases (HDAC) and DNA ... [more ▼]

DNA methylation and histone deacetylation are two key epigenetic modifications that play central role in regulation of gene expression. Several studies have shown that histone deacetylases (HDAC) and DNA methyltransferases (DNMT) inhibitors are potent antiangiogenic compounds. Though combination of HDAC and DNMT inhibitors are now being examined in clinical trials of hematological malignancies, very little work has been done to understand the effect of this combination on normal and tumoral angiogenesis. We have designed and tested a family of twin drugs with intrinsic HDAC and DNMT inhibitory activities in relevant models of angiogenesis in vitro (endothelial cells, pericytes and the 3D aortic ring assay) and in vivo (the chick chorioallantoic membrane assay). We have identified a lead compound having quantifiable antiangiogenic effect without cytotoxicity associated with increased global acetylation and decreased DNA methylation levels. This compound is presently used to develop effective approaches to treat cancer by modulating the process of angiogenesis. [less ▲]

Detailed reference viewed: 183 (67 ULg)
Full Text
Peer Reviewed
See detailDoes plasminogen activator inhibitor-1 drive lymphangiogenesis?
Bruyere, Francoise; Melen-Lamalle, Laurence; Blacher, Silvia ULg et al

in PLoS ONE (2010), 5(3), 9653

The purpose of this study is to explore the function of plasminogen activator inhibitor-1 (PAI-1) during pathological lymphangiogenesis. PAI-1, the main physiological inhibitor of plasminogen activators ... [more ▼]

The purpose of this study is to explore the function of plasminogen activator inhibitor-1 (PAI-1) during pathological lymphangiogenesis. PAI-1, the main physiological inhibitor of plasminogen activators is involved in pathological angiogenesis at least by controlling extracellular proteolysis and by regulating endothelial cell survival and migration. Protease system's role in lymphangiogenesis is unknown yet. Thus, based on its important pro-angiogenic effect, we hypothesized that PAI-1 may regulate lymphangiogenesis associated at least with metastatic dissemination of cancer cells. To address this issue, we studied the impact of PAI-1 deficiency in various murine models of tumoral lymphangiogenesis. Wild-type PAI-1 proficient mice were used as controls. We provide for the first time evidence that PAI-1 is dispensable for tumoral lymphangiogenesis associated with breast cancers either induced by mammary carcinoma cell injection or spontaneously appearing in transgenic mice expressing the polyomavirus middle T antigen (PymT) under the control of a mouse mammary tumor virus long-terminal repeat promoter (MMTV-LTR). We also investigated inflammation-related lymphatic vessel recruitment by using two inflammatory models. PAI-1 deficiency did neither affect the development of lymphangioma nor burn-induced corneal lymphangiogenesis. These novel data suggest that vascular remodelling associated with lymphangiogenesis and angiogenesis involve different molecular determinants. PAI-1 does not appear as a potential therapeutic target to counteract pathological lymphangiogenesis. [less ▲]

Detailed reference viewed: 81 (22 ULg)
Full Text
Peer Reviewed
See detailHigher sensitivity of Adamts12-deficient mice to tumor growth and angiogenesis.
El Hour, Mehdi ULg; Moncada-Pazos, A.; Blacher, Silvia ULg et al

in Oncogene (2010), 29(20), 3025-32

ADAMTS (a disintegrin and metalloproteinase domain with thrombospondin motifs) constitute a family of endopeptidases related to matrix metalloproteinases. These proteases have been largely implicated in ... [more ▼]

ADAMTS (a disintegrin and metalloproteinase domain with thrombospondin motifs) constitute a family of endopeptidases related to matrix metalloproteinases. These proteases have been largely implicated in tissue remodeling and angiogenesis associated with physiological and pathological processes. To elucidate the in vivo functions of ADAMTS-12, we have generated a knockout mouse strain (Adamts12−/−) in which Adamts12 gene was deleted. The mutant mice had normal gestations and no apparent defects in growth, life span and fertility. By applying three different in vivo models of angiogenesis (malignant keratinocyte transplantation, Matrigel plug and aortic ring assays) to Adamts12−/− mice, we provide evidence for a protective effect of this host enzyme toward angiogenesis and cancer progression. In the absence of Adamts-12, both the angiogenic response and tumor invasion into host tissue were increased. Complementing results were obtained by using medium conditioned by cells overexpressing human ADAMTS-12, which inhibited vessel outgrowth in the aortic ring assay. This angioinhibitory effect of ADAMTS-12 was independent of its enzymatic activity as a mutated inactive form of the enzyme was similarly efficient in inhibiting endothelial cell sprouting in the aortic ring assay than the wild-type form. Altogether, our results show that ADAMTS-12 displays antiangiogenic properties and protect the host toward tumor progression. [less ▲]

Detailed reference viewed: 140 (36 ULg)
Full Text
Peer Reviewed
See detailReduction of brain metastases in plasminogen activator inhibitor-1-deficient mice with transgenic ocular tumors
Maillard, Catherine ULg; Bouquet, C.; Petitjean, Marie et al

in Carcinogenesis (2008), 29(11), 2236-2242

Plasminogen activator inhibitor-1 is known to play a paradoxical positive role in tumor angiogenesis, but its contribution to metastatic spread remains unclear. We studied the impact of PAI-1 deficiency ... [more ▼]

Plasminogen activator inhibitor-1 is known to play a paradoxical positive role in tumor angiogenesis, but its contribution to metastatic spread remains unclear. We studied the impact of PAI-1 deficiency in a transgenic mouse model of ocular tumors originating from retinal epithelial cells and leading to brain metastasis (TRP-1/SV40 Tag mice). PAI-1 deficiency did not affect primary tumor growth or vascularization, but was associated with a smaller number of brain metastases. Brain metastases were found to be differentially distributed between the two genotypes. PAI-1-deficient mice displayed mostly secondary foci expanding from local optic nerve infiltration, whereas wild-type animals displayed more disseminated nodules in the scissura and meningeal spaces. SuperArray GEArray analyses aiming to detect molecules potentially compensating for PAI-1 deficiency demonstrated an increase in fibroblast growth factor-1 (FGF-1) gene expression in primary tumors, which was confirmed by RT-PCR and western blotting. Our data provide the first evidence of a key role for PAI-1 in a spontaneous model of metastasis, and suggest that angiogenic factors, such as FGF-1, may be important for primary tumor growth and may compensate for the absence of PAI-1. They identify PAI-1 and FGF-1 as important targets for combined anti-tumor strategies. [less ▲]

Detailed reference viewed: 86 (11 ULg)
Full Text
Peer Reviewed
See detailPlasminogen activator inhibitor-1 protects endothelial cells from FasL-mediated apoptosis.
Bajou, Khalid ULg; Peng, H.; Laug, W. E. et al

in Cancer Cell (2008), 14(4), 324-34

Plasminogen activator inhibitor-1 (PAI-1) paradoxically enhances tumor progression and angiogenesis; however, the mechanism supporting this role is not known. Here we provide evidence that PAI-1 is ... [more ▼]

Plasminogen activator inhibitor-1 (PAI-1) paradoxically enhances tumor progression and angiogenesis; however, the mechanism supporting this role is not known. Here we provide evidence that PAI-1 is essential to protect endothelial cells (ECs) from FasL-mediated apoptosis. In the absence of host-derived PAI-1, human neuroblastoma cells implanted in PAI-1-deficient mice form smaller and poorly vascularized tumors containing an increased number of apoptotic ECs. We observed that knockdown of PAI-1 in ECs enhances cell-associated plasmin activity and increases spontaneous apoptosis in vitro. We further demonstrate that plasmin cleaves FasL at Arg144-Lys145, releasing a soluble proapoptotic FasL fragment from the surface of ECs. The data provide a mechanism explaining the proangiogenic activity of PAI-1. [less ▲]

Detailed reference viewed: 72 (16 ULg)
Full Text
Peer Reviewed
See detailDefensis induce the recruitment of dendritic cells in cervical human papillomavirus-associated (pre)neoplastic lesions formed in vitro and transplanted in vivo
Hubert, Pascale ULg; Herman, Ludivine ULg; Maillard, Catherine ULg et al

in FASEB Journal (2007), 21(11), 2765-75

In addition to their direct antimicrobial activity, defensins might also influence adaptive immunity by attracting immature dendritic cells (DC). As these cells have been shown to be deficient in uterine ... [more ▼]

In addition to their direct antimicrobial activity, defensins might also influence adaptive immunity by attracting immature dendritic cells (DC). As these cells have been shown to be deficient in uterine cervix carcinogenesis, we evaluated the ability of -defensin (HNP-2, human neutrophil defensin 2) and ß-defensin (HßD2, human beta defensin 2) to stimulate their migration in human papillomavirus (HPV)-associated (pre)cancers. We first observed, using RT-PCR and immunohistology, that HßD2 is absent in HPV-transformed keratinocytes and that it is weakly expressed in cervical (pre)neoplastic lesions in comparison with normal keratinocytes. We next demonstrated that defensins exert a chemotactic activity for DC in a Boyden Chamber assay and stimulate their infiltration in an in vitro-formed (pre)neoplastic epithelium (organotypic culture of HPV-transformed keratinocytes). To evaluate the ability of defensins also to recruit DC in vivo, we developed a model of immunodeficient mice grafted with organotypic cultures of HPV+ keratinocytes, which form an epithelium similar to a high-grade neoplastic lesion, with tumoral invasion and neovascularization. Intravenously injected human DC were able to infiltrate grafts of HPV+ keratinocytes after administration of HNP-2 in the transplantation chamber. Taken together, these results suggest that defensins could reverse a frequent immune alteration observed in cancer development. [less ▲]

Detailed reference viewed: 57 (19 ULg)
Full Text
Peer Reviewed
See detailTumoral and choroidal vascularization: differential cellular mechanisms involving plasminogen activator inhibitor type I.
Jost, Maud; Maillard, Catherine ULg; Lecomte, Julie ULg et al

in American Journal of Pathology (2007), 171(4), 1369-80

An adequate balance between serine proteases and their plasminogen activator inhibitor-1 (PAI-1) is critical for pathological angiogenesis. PAI-1 deficiency in mice is associated with impaired choroidal ... [more ▼]

An adequate balance between serine proteases and their plasminogen activator inhibitor-1 (PAI-1) is critical for pathological angiogenesis. PAI-1 deficiency in mice is associated with impaired choroidal neovascularization (CNV) and tumoral angiogenesis. In the present work, we demonstrate unexpected differences in the contribution of bone marrow (BM)-derived cells in these two processes regulated by PAI-1. PAI-1(-/-) mice grafted with BM-derived from wild-type mice were able to support laser-induced CNV formation but not skin carcinoma vascularization. Engraftment of irradiated wild-type mice with PAI-1(-/-) BM prevented CNV formation, demonstrating the crucial role of PAI-1 delivered by BM-derived cells. In contrast, the transient infiltration of tumor transplants by local PAI-1-producing host cells rather than by BM cells was sufficient to rescue tumor growth and angiogenesis in PAI-1-deficient mice. These data identify PAI-1 as a molecular determinant of a local permissive soil for tumor angiogenesis. Altogether, the present study demonstrates that different cellular mechanisms contribute to PAI-1-regulated tumoral and CNV. PAI-1 contributes to BM-dependent choroidal vascularization and to BM-independent tumor growth and angiogenesis. [less ▲]

Detailed reference viewed: 79 (32 ULg)
Full Text
Peer Reviewed
See detailPlasminogen activator inhibitor type I (PAI-1) controls bone marrow-dependent and independent vascularization
Jost, M.; Maillard, Catherine ULg; Lambert, Vincent ULg et al

in Acta Clinica Belgica (2006), 61(2, MAR-APR), 87

Detailed reference viewed: 77 (21 ULg)