References of "Mahmoud, Abdelfattah"
     in
Bookmark and Share    
See detailUp-scalable spray-drying synthesis of Na2Ti3O7
Piffet, Caroline ULg; Vertruyen, Bénédicte ULg; Mahmoud, Abdelfattah ULg et al

Poster (2017, September 07)

Detailed reference viewed: 16 (0 ULg)
Full Text
Peer Reviewed
See detailExperimental and theoretical investigation of SrFe12O19 nanopowder for permanent magnet application
Abraime, Brahim; Ait tamerd, Mohamed; Mahmoud, Abdelfattah ULg et al

in Ceramics International (2017)

Strontium M-type hexagonal ferrites were synthesized at different calcination temperatures (800 °C, 1000 °C and 1100 °C) using sol-gel autocombustion method. Thermogravimetric analysis (TGA), X-ray ... [more ▼]

Strontium M-type hexagonal ferrites were synthesized at different calcination temperatures (800 °C, 1000 °C and 1100 °C) using sol-gel autocombustion method. Thermogravimetric analysis (TGA), X-ray diffraction (XRD), scanning electron microscopy (SEM), Mössbauer spectroscopy (MS) and superconducting quantum interference device magnetometer (SQUID) techniques were used to characterize crystal structure, phase composition, morphology and magnetic properties. TGA gives T = 800 °C as beginning of suitable calcination. Hexaferrite structure of single phase is obtained according to XRD results for all samples with crystallite size between 28 nm and 35 nm. SEM images show the growth of grain size with increasing of annealing temperature. (BH)max is calculated based on SQUID results and shows an enhancement between T = 800 °C and T = 1000 °C of 25%. The magnetic properties observed at low temperature are explained and confirmed by ab-initio calculations [less ▲]

Full Text
Peer Reviewed
See detailHydrothermal synthesis in presence of carbon black: Particle-size reduction of iron hydroxyl phosphate hydrate for Li-ion battery
Karegeya, Claude ULg; Mahmoud, Abdelfattah ULg; Cloots, Rudi ULg et al

in Electrochimica Acta (2017), 250

Iron hydroxyl phosphate hydrate Fe1.19(PO4)(OH)0.57(H2O)0.43 (FPHH) was obtained by hydrothermal synthesis at 220 °C for 6 hours. Addition of carbon black to the solution before hydrothermal treatment led ... [more ▼]

Iron hydroxyl phosphate hydrate Fe1.19(PO4)(OH)0.57(H2O)0.43 (FPHH) was obtained by hydrothermal synthesis at 220 °C for 6 hours. Addition of carbon black to the solution before hydrothermal treatment led to a reduction of the FPHH particle size from ∼10 μm in the carbon-free compound to ∼300–500 nm in the FPHH-10%C and FPHH-20%C composite with a good dispersion of conducting carbon black. X-ray diffraction, 57Fe Mossbauer spectroscopy and a thermal decomposition study showed that the addition of carbon black did not interfere with the formation of the FPHH phase. Thanks to its favorable microstructural characteristics, the FPHH-10%C and FPHH-20%C material exhibited good performance as positive electrode for Li-ion battery, with high initial discharge capacities of 150, 128 and 112 mAh g−1 at 0.25C, 0.5C and 1C rates respectively and 99% capacity retention after 150 cycles at 2C. These results show that addition of solid carbon directly into the solution prior to hydrothermal treatment is a simple and effective way to reduce particle size and also to improve electronic conductivity by dispersing conductive carbon around the active material. This approach is easily transferable to other compounds prepared by hydrothermal synthesis, in order to control particle size while retaining the advantage of crystallization at low temperature. [less ▲]

Detailed reference viewed: 21 (4 ULg)
Full Text
Peer Reviewed
See detailCation Distribution Dependent Magnetic Properties in CoCr 2-x Fe x O 4 (x= 0.1 to 0.5): EXAFS, Mӧssbauer and Magnetic Measurements
Kumar, Durgesh; Banerjee, Alok; Mahmoud, Abdelfattah ULg et al

in Dalton Transactions (2017), 46

In this report, we have examined the evolution of the structure and rich magnetic transitions such as a paramagnetic to ferrimagnetic phase transition at the Curie temperature (TC), spiral ordering ... [more ▼]

In this report, we have examined the evolution of the structure and rich magnetic transitions such as a paramagnetic to ferrimagnetic phase transition at the Curie temperature (TC), spiral ordering temperature (TS) and lock-in temperature (TL) observed in the CoCr2O4 spinel multiferroic after substituting Fe. The crystal structure, microstructure and cation distribution among the tetrahedral (A) and octahedral (B) sites in the spinel lattice are characterised by X-ray diffraction, transmission electron microscopy, Extended X-ray Absorption Fine Structure (EXAFS) and Mössbauer spectroscopy. Due to the same radial distances of the first coordination shell in both tetrahedral and octahedral environments observed in EXAFS spectra, the position of the second coordination shell specifies the preference of more Fe ions towards the A site at x = 0.1. At x = 0.5, more Fe ions favour the B site. The cation distribution quantitatively obtained from the Mössbauer spectral analysis shows that while 60% of Fe ions occupy the A site in x = 0.1, 40% occupy it in x = 0.5. Surprisingly at x = 0.3, Fe ions are distributed equally among the A and B sites. dc magnetization reveals an increase in TC from 102 K to 200 K and in TS from 26 to 40 K with an increase in Fe concentration, indicating an enhancement in A–B exchange interaction at the expense of B–B. No report has until now demonstrated such an enhancement in TS either in pure or in doped CoCr2O4. Furthermore, frequency-dependent ac susceptibility (χ) data fitted with different phenomenological models such as the Néel–Arrhenius, Vogel–Fulcher and power law confirm a spin-glass and/or cluster-glass behaviour in nanoparticles of CoCr2−xFexO4. [less ▲]

Full Text
Peer Reviewed
See detailSpray-drying as a tool to disperse conductive carbon inside Na2FePO4F particles by addition of carbon black or carbon nanotubes to the precursor solution
Mahmoud, Abdelfattah ULg; Caes, Sebastien; Brisbois, Magali et al

in Journal of Solid State Electrochemistry (2017)

In this work, Na2FePO4F-carbon composite powders were prepared by spray-drying a solution of inorganic precursors with 10 and 20 wt% added carbon black (CB) or carbon nanotubes (CNTs). In order to compare ... [more ▼]

In this work, Na2FePO4F-carbon composite powders were prepared by spray-drying a solution of inorganic precursors with 10 and 20 wt% added carbon black (CB) or carbon nanotubes (CNTs). In order to compare the effect of CB and CNTwhen added to the precursor solutions, the structural, electrochemical, and morphological properties of the synthesized Na2FePO4F-xCB and Na2FePO4F-xCNT samples were systematically investigated. In both cases, X-ray diffraction shows that calcination at 600 °C in argon leads to the formation of Na2FePO4F as the major inorganic phase. 57Fe Mössbauer spectroscopy was used as complementary technique to probe the oxidation states, local environment, and identify the composition of the iron-containing phases. The electrochemical performance is markedly better in the case of Na2FePO4F-CNT (20 wt%), with specific capacities of about 100 mAh/g (Na2FePO4F-CNT) at C/4 rate vs. 50 mAh/g for Na2FePO4F-CB (20 wt%). SEM characterization of Na2FePO4F-CB particles revealed different particle morphologies for the Na2FePO4F-CNT and Na2FePO4F-CB powders. The carbon-poor surface observed for Na2FePO4FCB could be due to a slow diffusion of carbon in the droplets during drying. On the contrary, Na2FePO4F-CNT shows a better CNT dispersion inside and at the surface of the NFPF particles that improves the electrochemical performance. [less ▲]

Detailed reference viewed: 24 (8 ULg)
Full Text
Peer Reviewed
See detailHighly efficient doped nanocristalline TiO2 for water Treatment
Mahy, Julien ULg; Léonard, Géraldine ULg; Zubiaur, Anthony ULg et al

Conference (2017, July 13)

Detailed reference viewed: 28 (5 ULg)
Full Text
Peer Reviewed
See detailOne-step hydrothermal synthesis and electrochemical performance of sodium-manganese-iron phosphate as cathode material for Li-ion batteries
Karegeya, Claude ULg; Mahmoud, Abdelfattah ULg; Vertruyen, Bénédicte ULg et al

in Journal of Solid State Chemistry (2017), 253

The sodium-manganese-iron phosphate Na2Mn1.5Fe1.5(PO4)3 (NMFP) with alluaudite structure was obtained by a one-step hydrothermal synthesis route. The physical properties and structure of this material ... [more ▼]

The sodium-manganese-iron phosphate Na2Mn1.5Fe1.5(PO4)3 (NMFP) with alluaudite structure was obtained by a one-step hydrothermal synthesis route. The physical properties and structure of this material were obtained through XRD and Mössbauer analyses. X-ray diffraction Rietveld refinements confirm a cationic distribution of Na+ and presence of vacancies in A(2)’, Na+ and small amounts of Mn2+ in A(1), Mn2+ in M(1) , 0.5 Mn2+ and Fe cations (Mn2+,Fe2+ and Fe3+) in M(2), leading to the structural formula Na2Mn(Mn0.5Fe1.5)(PO4)3. The particles morphology was investigated by SEM. Several reactions with different hydrothermal reaction times were attempted to design a suitable synthesis protocol of NMFP compound. The time of reaction was varied from 6 to 48 hours at 220°C. The pure phase of NMFP particles was firstly obtained when the hydrothermal reaction of NMFP precursors mixture was maintained at 220°C for 6 hours. When the reaction time was increased from 6 to 12, 24 and 48 hours, the dandelion structure was destroyed in favor of NMFP micro-rods. The combination of NMFP (NMFP-6H, NMFP-12H, NMFP-24H and NMFP-48H) structure refinement and Mössbauer characterizations shows that the increase of the reaction time leads to the progressive increment of Fe(III) and the decrease of the crystal size. The electrochemical tests indicated that NMFP is a 3 V sodium intercalating cathode. The comparison of the discharge capacity evolution of studied NMFP electrode materials at C/5 current density shows different capacities of 48, 40, 34 and 34 mAhg-1 for NMFP-6H, NMFP-12H, NMFP-24H and NMFP-48H respectively. Interestingly, all samples show excellent capacity retention of about 99 % during 50 cycles. [less ▲]

Detailed reference viewed: 22 (0 ULg)
Full Text
See detailAnalysing operando Mössbauer spectra of battery materials: a chemometric approach to the study of NaFeO2 as positive electrode material for Na-ion batteries
Stievano, Lorenzo; Sougrati, Moulay Tahar; Darwiche, Ali et al

Conference (2017, May 19)

Among the possible positive electrode materials for Na-ion batteries, iron-based oxides have been regarded as promising solids for the reversible insertion/deinsertion of Na on the basis of their ... [more ▼]

Among the possible positive electrode materials for Na-ion batteries, iron-based oxides have been regarded as promising solids for the reversible insertion/deinsertion of Na on the basis of their abundance in the Earth’s crust. In particular, O3-type NaFeO2, easily prepared from the reaction of iron oxide and Na2CO3 at 600°C, has been identified as the most interesting one from the viewpoint of both gravimetric and volumetric energy density.[1–3] Na/NaFeO2 cells cycle through a relatively flat potential plateau between 3.3 and 3.4 V vs. Na+/Na, commonly associated with the Fe4+/Fe3+ redox couple. However, if cycling is extended above 3.5 V, other irreversible reaction plateaux appear, which completely inactivate the material. 57Fe Mössbauer spectroscopy is thus a method of choice for the study of both (1) the cycling mechanism and (2) the irreversible reactions occurring above 3.5 V. In this work, operando 57Fe Mössbauer spectra were collected during the electrochemical cycling of NaFeO2 vs. Na metal using a specifically designed in situ cell,[4] and analysed using an alternative and innovating data analysis approach based on chemometric tools such as Principal Component Analysis (PCA) and multivariate curve resolution (MCR).[5,6] This approach, which allows the unbiased extraction of all possible information from the operando data, enabled the stepwise reconstruction of the “real” spectral components occurring during the cycling of NaFeO2. In this way, a clear description of the electrochemically active iron species could be obtained, allowing a clearer comprehension of the cycling mechanisms of this material vs. sodium. Références : [1] J. Zhao, L. Zhao, N. Dimov, O. Shigeto, T. Nishida, J. Electrochem. Soc. 160 (2013) A3077. [2] H. Yoshida, N. Yabuuchi, S. Komaba, in:, ECS Meet. Abstr. MA2012-02, ECS, Honolulu, 2011, p. 1850. [3] P. Barpanda, Chem. Mater. 28 (2016) 1006. [4] J.-B. Leriche, S. Hamelet, J. Shu, M. Morcrette, C. Masquelier, G. Ouvrard, M. Zerrouki, P. Soudan, S. Belin, E. Elkaïm, F. Baudelet, J. Electrochem. Soc. 157 (2010) A606. [5] R. Tauler, Chemom. Intell. Lab. 30 (1995) 133. [6] A. Voronov, A. Urakawa, W. van Beek, N.E. Tsakoumis, H. Emerich, M. Rønning, Anal. Chim. Acta 840 (2014) 20. [less ▲]

Detailed reference viewed: 63 (3 ULg)
Full Text
See detailStructural and Magnetic Properties of Nanosized strontium Hexaferrite Powders: Experimental and theoretical investigation
Abraime, Brahim; Ait Tamerd, Mohamed; Mahmoud, Abdelfattah ULg et al

Poster (2017, May 18)

Strontium M-type hexagonal ferrites were synthesized at different calcination temperatures (800 °C, 1000°C and 1100 °C) using sol-gel autocombustion method. Thermogravimetric analysis (TGA), X-ray ... [more ▼]

Strontium M-type hexagonal ferrites were synthesized at different calcination temperatures (800 °C, 1000°C and 1100 °C) using sol-gel autocombustion method. Thermogravimetric analysis (TGA), X-ray diffraction (XRD), scanning electron microscopy (SEM), Mössbauer spectroscopy (MS) and superconducting quantum interference device magnetometer (SQUID) techniques were used to characterize crystal structure, phase composition, morphology and magnetic properties. TGA gives T=800 °C as beginning of suitable calcination. Hexaferrite structure of single phase is obtained according to XRD results for all samples with crystallite size between 28 nm and 35 nm. SEM images show the growth of grain size with increasing of annealing temperature. (BH)max is calculated based on SQUID results and shows an enhancement between T=800°C and T= 1000°C of 25%. The magnetic properties observed at low temperature are explained and confirmed by ab-initio calculations. [less ▲]

Detailed reference viewed: 53 (2 ULg)
Full Text
See detailMécanismes de vieillissement des anodes à base de FeSn2 pour batteries Li-ion
Chamas, Mohamad; Mahmoud, Abdelfattah ULg; Tang, junlei et al

Poster (2017, May 18)

Les intermétalliques d’étain ont été proposés comme matériaux d’anode pour batteries Li-ion à forte densité d’énergie car leur capacité spécifique est bien supérieure à celle des anodes commerciales à ... [more ▼]

Les intermétalliques d’étain ont été proposés comme matériaux d’anode pour batteries Li-ion à forte densité d’énergie car leur capacité spécifique est bien supérieure à celle des anodes commerciales à base de carbone. Le mécanisme électrochimique est basé sur la transformation irréversible de FeSn2 en un composite formé de nanoparticules de fer et de Li3.5Sn lors de la première lithiation, puis de réactions réversibles modifiant la composition de Li3.5Sn, les particules de fer assurant la dispersion de ces particules à base d’étain [1]. Cependant, nous avons observé que l’électrode lithiée était instable dans le temps conduisant à l’autodécharge progressive de la batterie [2]. Ce phénomène de vieillissement a été caractérisé par spectrométrie Mössbauer du 57Fe et de 119Sn, par spectroscopie d’impédance et par mesures magnétiques (Figure 1). On montre que le composite Fe/Li3.5Sn se délithie progressivement au cours du temps conduisant à un composite faiblement lithié Fe/LixSn avec x<1. Les nanoparticules de fer sont stables et ne réagissent pas avec LixSn. Les atomes de lithium libérés réagissent avec l’électrolyte et modifient la morphologie de la couche SEI (Surface Electrolyte Interphase) située à la surface des particules LixSn du composite.[1] M. Chamas, M. T. Sougrati, C. Reibel, P.E. Lippens, Chem. Mater. 25, 2410 (2015). [2] M. Chamas, A. Mahmoud, J. Tang, S. Panero, M. T. Sougrati, P. E. Lippens, J. Phys Chem. C 121, 217 (2017). [less ▲]

Detailed reference viewed: 19 (3 ULg)
Full Text
See detailAn easy route to synthesis black phosphorus at low pressure and soft conditions
Tiouitchi, Ghassane; Hamedoun, Mohammed; El Kenz, Abdallah et al

Conference (2017, May 11)

Black phosphorus a promising candidate for large application, due to his variety of structural and physical properties, can be prepared by a very low-coast reaction route with high purity and ... [more ▼]

Black phosphorus a promising candidate for large application, due to his variety of structural and physical properties, can be prepared by a very low-coast reaction route with high purity and crystallinity. Black phosphorus is prepared from red phosphorus at 873K under reduced pressure using a simple and low cost catalytic system. The quality of crystal with lattice parameters a=3.31Å, b=10.48Å, c=4.37Å can be approved by a series of characterizations like scanning microscopy electron (SEM), energy dispersive spectrometry (EDX), Raman spectroscopy and powder X-rays. The new preparation method of black phosphorus represents an easy, effective and low cost approach to avoid complicated preparative setups, toxic catalysts, or “dirty” flux methods and is of general interest in elemental chemistry. [less ▲]

Detailed reference viewed: 92 (4 ULg)
Full Text
See detailEnergy product and magnetic properties of strontium hexagonal ferrite: experimental and theoretical investigation
Abraime, Brahim; Ait Tamerd, Mohamed; Mahmoud, Abdelfattah ULg et al

Conference (2017, May 10)

The interest toward hard magnetic materials increases in the last years. In order to have the best magnetic properties of these materials, researchers count on the efficiency of different synthesis ... [more ▼]

The interest toward hard magnetic materials increases in the last years. In order to have the best magnetic properties of these materials, researchers count on the efficiency of different synthesis methods. In permanent magnets application, ferrite materials possess a good place among the other magnet families. In permanent magnets field, the more important parameter that describes the magnetic strength of a magnet is the maximum energy product (BH)max. A strong permanent magnet has an important value of (BH)max. In this work, we will study the effect of annealing temperature on maximum energy product and other magnetic properties of Strontium hexaferrite SrFe12O19 synthesized using sol-gel autocombustion method, with different annealing temperatures, characterized using Thermogravimetric analysis (TGA), X-ray diffraction (XRD), scanning electron microscopy (SEM), Mössbauer spectroscopy (MS) and superconducting quantum interference device magnetometer (SQUID). Ab initio calculation for magnetic properties is also performed in order to compare it with low temperature experimental results. [less ▲]

Detailed reference viewed: 59 (4 ULg)
Full Text
See detailSpray Drying-­Assisted Synthesis of Na2FePO4F/CB and Na2FePO4F/CNT Composite Cathodes for Lithium Ion Battery
Mahmoud, Abdelfattah ULg; Brisbois; Caes, sebastien et al

Conference (2017, May 08)

Fluorophosphates are considered among the most interesting series of cathode materials for Li/Na-ion batteries. Na2FePO4F, with layered structure and two-dimensional pathways for facile Na+/Li+ transport ... [more ▼]

Fluorophosphates are considered among the most interesting series of cathode materials for Li/Na-ion batteries. Na2FePO4F, with layered structure and two-dimensional pathways for facile Na+/Li+ transport [1], exhibits minimal structural changes (3.7%) upon reduction/oxidation. The average working voltage is 3.3 V versus Li+/Li. However, one of the key drawbacks of Na2FePO4F electrodes is their low intrinsic electronic conductivity. In this work, we report on the synthesis of Na2FePO4F by spray-drying, a technique which is easily scaled-up from the lab- to the industrial-scale and ensures a good homogeneity of all precursors. We are investigating the replacement of the grinding step by the addition of conductive carbon (carbon black and carbon nanotubes) to the solution containing the inorganic precursors of the Na2FePO4F phase in order to prepare Na2FePO4F/CB and Na2FePO4F/CNT with different ratios of CB and CNT (10 and 20%) and enhanced conductivity. The electrochemical performance shows that the addition of CNT improves remarkably the capacity of the NFPF electrode material thanks to better CNT dispersion inside and at the surface of the NFPF particles which enhances the electronic conductivity. Acknowledgements: The authors thank the Walloon Region for support under the “PE Plan Marshall 2.vert” program (BATWAL -1318146). A. Mahmoud is grateful to the Walloon region for a Beware Fellowship Academia 2015-1, RESIBAT n° 1510399. References [1] M. Brisbois, S. Caes, M-T. Sougrati, B. Vertruyen, A. Schrijnemakers, R. Cloots, N. Eshraghi, R-P. Hermann, A. Mahmoud, F. Boschini, Solar Energy Materials & Solar Cells 148 (2015) 11-19. [less ▲]

Detailed reference viewed: 67 (8 ULg)
Full Text
Peer Reviewed
See detailMagnetocaloric Properties of Zinc-Nickel Ferrites Around Room Temperature
El Maalam, Khadija; Fkhar, lahcen; Mohammed, Hamedoun et al

in Journal of Superconductivity and Novel Magnetism (2017)

In this paper, structural, magnetic, and magnetocaloric properties of zinc-doped nickel ferrite, Zn1−xNixFe2O4 (x = 0.3 and 0.4) were investigated. The samples were prepared using solid-state reaction. X ... [more ▼]

In this paper, structural, magnetic, and magnetocaloric properties of zinc-doped nickel ferrite, Zn1−xNixFe2O4 (x = 0.3 and 0.4) were investigated. The samples were prepared using solid-state reaction. X-ray diffraction (XRD) and magnetization measurements were performed to study crystallographic structure and magnetic properties. For a magnetic field changing from 0 to 5 T, the corresponding isothermal entropy change was found to be near 1.4 J/kg K for both samples. The decreasing of Ni content from x = 0.4 to 0.3, enables to shift the Curie temperature of Zn1−xNixFe2O4 from 450 K toward (325 K). As main results, it was found that the relative cooling power (RCP) could be significantly enhanced by changing Ni concentration in Zn1−xNixFe2O4 (505 J/kg (for x = 0.3) and 670 J/kg (for x = 0.4)), which is considered as a recommended parameter for a wide temperature range in magnetic refrigeration application. Our finding should inspire and open new ways for the enhancement of the magnetocaloric effect in spinel ferrite-based materials. [less ▲]

Detailed reference viewed: 66 (8 ULg)
Full Text
Peer Reviewed
See detailSodium vanadium (III) fluorophosphate/carbon nanotubes composite (NVPF/CNT) prepared by spray-drying: good electrochemical performance thanks to well-dispersed CNT network within NVPF particles
Eshraghi, Nicolas ULg; Caes, Sebastien; Mahmoud, Abdelfattah ULg et al

in Electrochimica Acta (2017), 228

We successfully prepared NASICON-type Na3V2(PO4)2F3 (NVPF) and a Na3V2(PO4)2F3/carbon nanotubes (CNT) composite by spray-drying followed by heat treatment in argon for 2 hours at 600 °C. The addition of ... [more ▼]

We successfully prepared NASICON-type Na3V2(PO4)2F3 (NVPF) and a Na3V2(PO4)2F3/carbon nanotubes (CNT) composite by spray-drying followed by heat treatment in argon for 2 hours at 600 °C. The addition of CNT in the spray-drying solution creates a CNT network within the NVPF particles. After grinding, the smaller NVPF particles remain linked by CNT. Thanks to this conducting network, the composite powder displays competitive electrochemical performance when cycled against lithium in hybrid-ion batteries (2–4.6 V vs. Li+/Li) with specific capacities of 125 mAh.g−1 at C/10, 103 mAh.g−1 at 1C and 91 mAh.g−1 at 4C, together with 97.5% capacity retention at 1C over 100 cycles with coulombic efficiency of 99.4%. These results demonstrate that sodium vanadium (III) fluorophosphate electrode material can be obtained in a time-efficient way using the easily up-scalable spray-drying method. [less ▲]

Detailed reference viewed: 50 (15 ULg)
Full Text
Peer Reviewed
See detailThe design and study of new Li-ion full cells of LiCo2/3Ni1/6Mn1/6O2 positive electrode paired with MnSn2 and Li4Ti5O12 negative electrodes
Mahmoud, Abdelfattah ULg; Saadoune, Ismael; Lippens, Pierre-Emmanuel et al

in Solid State Ionics (2017), 300

We report evidence for the electrochemical performances of two Li-ion full cells, built up by the combination of LiCo2/3Ni1/6Mn1/6O2 cathode material with MnSn2 intermetallic and Li4Ti5O12 spinel as the ... [more ▼]

We report evidence for the electrochemical performances of two Li-ion full cells, built up by the combination of LiCo2/3Ni1/6Mn1/6O2 cathode material with MnSn2 intermetallic and Li4Ti5O12 spinel as the anode materials, respectively. MnSn2 and Li4Ti5O12 electrode materials illustrate different working voltage versus the redox couple Li+/Li0 and different reactionmechanisms during lithiuminsertion/deinsertion cycles. The structure,morphological characteristics and the electrochemical properties of the studied materialswere investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical techniques. The two full-cell configurations showed different electrochemical behaviors. The MnSn2//LiCo2/3Ni1/6Mn1/6O2 configuration exhibits high working voltage (~3.5 V) and specific capacity (~200 mAh/gcathode) but suffers from high irreversible capacity loss during the first cycles and capacity fading during cycling. The Li4Ti5O12//LiCo2/3Ni1/6Mn1/6O2 cell demonstrated excellent cycling properties at different C-rates with 100% capacity retention after 150 cycles at 1 C. Although the working voltage (~2.2 V) and the specific capacity (~140 mAh/gcathode) are lower than those of the MnSn2//LiCo2/3Ni1/6Mn1/6O2 configuration, the other measured electrochemical properties suggest that the Li4Ti5O12//LiCo2/3Ni1/6Mn1/6O2 full cell is a potential candidate for battery application due to its excellent cycling performance and improved safety. [less ▲]

Detailed reference viewed: 22 (6 ULg)
Full Text
See detailHydrothermal synthesis of tailored new  promising phosphate particles for lithium and sodium ion batteries
Karegeya, Claude ULg; Mahmoud, Abdelfattah ULg; Sougrati Tahar, Moulay et al

Conference (2016, December 16)

The rechargeable Li-ion batteries dominate the currently used storage systems due to their unrivalled electrochemical properties. However, this technology needs more improvements to meet coast, high ... [more ▼]

The rechargeable Li-ion batteries dominate the currently used storage systems due to their unrivalled electrochemical properties. However, this technology needs more improvements to meet coast, high capacity, safety and environmental requirements. Current researches on Li-ion batteries are focusing on the development of safe and cheap electrode compounds with good electrochemical performance. Iron phosphate-based electrodes have attracted increasing interest due to their environmental compatibility, low cost and its promising electrochemical performance as positive electrode materials in LIB. In this work, we report the electrochemical properties of Fex(PO4)(OH)y.zH2O) cathode material obtained by one-pot hydrothermal synthesis route, a technique which produces the particles with suitable properties for electrode application. We show that the addition of a conducting carbon (carbon black or carbon nanotubes) into the solution has a strong influence on reducing the size and tailoring morphology of material particles. These are among the main factors to enhance the electrochemical performance of the material. Combined with electrochemical and XRD studies, operando Mössbauer analysis shows that Fex(PO4)(OH)y.zH2O) undergoes a reversible reduction/oxidation during lithium intercalation/ deintercalation processes. Acknowledgments This work was supported by the Walloon Region through the BATWAL project [PE Plan Marshall 2.vert]; and the Beware Fellowship Academia [2015-1, RESIBAT n° 1510399]. [less ▲]

Detailed reference viewed: 76 (15 ULg)
Full Text
See detailMetal Carbodiimides and Metal Cyanamides as Electrode Materials
sougrati, Moulay tahar; Darwiche, Ali; Monconduit, Laure et al

Patent (2016)

(EN)The invention relates to the use of a metal carbodiimide or a metal cyanamide as a new active material for a negative electrode, a negative electrode comprising said metal carbodiimide or metal ... [more ▼]

(EN)The invention relates to the use of a metal carbodiimide or a metal cyanamide as a new active material for a negative electrode, a negative electrode comprising said metal carbodiimide or metal cyanamide, its preparation method, a battery comprising said negative electrode, and a method for the preparation of a composite material. (FR)L'invention concerne l'utilisation d'un carbodiimide métallique ou d'un cyanamide métallique en tant que nouveau matériau actif pour une électrode négative, une électrode négative comprenant ce carbodiimide métallique ou ce cyanamide métallique, son procédé de préparation, une batterie comprenant l'électrode négative, et un procédé pour la préparation d'un matériau composite. [less ▲]

Detailed reference viewed: 38 (2 ULg)
Full Text
Peer Reviewed
See detailAging Processes in Lithiated FeSn2 Based Negative Electrode for Li-ion Batteries: a New Challenge for Tin Based Intermetallic Materials
chamas, mohamad; Mahmoud, Abdelfattah ULg; Tang, Junlei et al

in Journal of Physical Chemistry C (2016)

Tin based intermetallic compounds proposed as negative electrode materials for Li-ion batteries not only suffer from capacity fade during cycling due to volume variations but also from aging phenomena in ... [more ▼]

Tin based intermetallic compounds proposed as negative electrode materials for Li-ion batteries not only suffer from capacity fade during cycling due to volume variations but also from aging phenomena in lithiated states. By using FeSn2 as a model compound, we propose an analysis of this process by combining electrochemical potential measurements, 119Sn and 57Fe Mössbauer spectroscopies, magnetic measurements and impedance spectroscopy. We show that the Fe/Li7Sn2 composite obtained at the end of the first discharge is progressively transformed during the aging process occurring within the electrochemical cell in open circuit condition. The Fe nanoparticles are stable while the Li7Sn2 nanoparticles are progressively delithiated with time leading to Sn-rich LixSn nano-alloys without observable back reaction with Fe. The deinserted lithium atoms react with the electrolyte and modify the surface electrode interphase (SEI) by increasing its thickness and/or decreasing its porosity [less ▲]

Detailed reference viewed: 25 (0 ULg)