References of "MENTEN-DEDOYART, Catherine"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailNeutrophil Extracellular Traps (NET) Entrap and Kill Borrelia burgdorferi sensu stricto Spirochetes and Are not Affected by Ixodes ricinus Tick Saliva.
MENTEN-DEDOYART, Catherine ULg; Faccinetto, Céline; Golovchenko, Maryna et al

in Journal of Immunology (2012), 189(11), 5393-5401

Lyme disease is a pathology caused by members of the Borrelia burgdorferi sensu lato (s.l.) complex, most often by B. burgdorferi sensu stricto (s.s.). They are transmitted mainly by Ixodes ricinus ticks ... [more ▼]

Lyme disease is a pathology caused by members of the Borrelia burgdorferi sensu lato (s.l.) complex, most often by B. burgdorferi sensu stricto (s.s.). They are transmitted mainly by Ixodes ricinus ticks. After a few hours of infestation, neutrophils massively infiltrate the bite site. They can kill Borrelia via phagocytosis, oxidative burst and hydrolytic enzymes. However, factors in tick saliva promote propagation of the bacteria in the host even in the presence of a large number of neutrophils. Neutrophil extracellular trap (NET) consists in the extrusion of the neutrophil’s own DNA, forming traps that can retain and kill bacteria. The production of reactive oxygen species (ROS) is apparently associated with the onset of NEtosis. Here we describe NETs formation at the tick bite site in vivo in mice. We show that Borrelia burgdorferi s.s. spirochetes become trapped and killed by NETs in humans and that the bacteria do not seem to release significant nucleases to evade this process. Saliva from I. ricinus did not affect NET formation by human neutrophiles or it stability. However, it strongly decreased neutrophil ROS production, suggesting that a strong decrease of hydrogen peroxide does not affect NET formation. Finally, round bodies were observed trapped in NETs, some of them staining as live cells. This observation could help contribute to a better explanation of erythema migrans. [less ▲]

Detailed reference viewed: 80 (16 ULg)
Full Text
Peer Reviewed
See detailIr-LBP, an ixodes ricinus tick salivary LTB4-binding lipocalin, interferes with host neutrophil function.
Beaufays, Jérôme ULg; Adam, Benoit; Menten-Dedoyart, Catherine ULg et al

in PLoS ONE (2008), 3(12), 3987

BACKGROUND: During their blood meal, ticks secrete a wide variety of proteins that can interfere with their host's defense mechanisms. Among these proteins, lipocalins play a major role in the modulation ... [more ▼]

BACKGROUND: During their blood meal, ticks secrete a wide variety of proteins that can interfere with their host's defense mechanisms. Among these proteins, lipocalins play a major role in the modulation of the inflammatory response. METHODOLOGY/PRINCIPAL FINDINGS: We previously identified 14 new lipocalin genes in the tick Ixodes ricinus. One of them codes for a protein that specifically binds leukotriene B4 with a very high affinity (Kd: +/-1 nM), similar to that of the neutrophil transmembrane receptor BLT1. By in silico approaches, we modeled the 3D structure of the protein and the binding of LTB4 into the ligand pocket. This protein, called Ir-LBP, inhibits neutrophil chemotaxis in vitro and delays LTB4-induced apoptosis. Ir-LBP also inhibits the host inflammatory response in vivo by decreasing the number and activation of neutrophils located at the tick bite site. Thus, Ir-LBP participates in the tick's ability to interfere with proper neutrophil function in inflammation. CONCLUSIONS/SIGNIFICANCE: These elements suggest that Ir-LBP is a "scavenger" of LTB4, which, in combination with other factors, such as histamine-binding proteins or proteins inhibiting the classical or alternative complement pathways, permits the tick to properly manage its blood meal. Moreover, with regard to its properties, Ir-LBP could possibly be used as a therapeutic tool for illnesses associated with an increased LTB4 production. [less ▲]

Detailed reference viewed: 82 (22 ULg)
Full Text
Peer Reviewed
See detailInfluence of the Ixodes ricinus tick blood-feeding on the antigen-specific antibody response in vivo.
Menten-Dedoyart, Catherine ULg; Couvreur, B.; Thellin, Olivier ULg et al

in Vaccine (2008), 26(52), 6956-64

The blood meal of hard ticks such as Ixodes ricinus lasts several days. This is made possible by tick salivary factors that inhibit inflammation, haemostasis and the host immune response. We assessed the ... [more ▼]

The blood meal of hard ticks such as Ixodes ricinus lasts several days. This is made possible by tick salivary factors that inhibit inflammation, haemostasis and the host immune response. We assessed the latter on a model of immune response in vivo. A significant reduction of specific IgM and IgG levels was observed in BALB/c mice infested 5 days before injection with bovine serum albumin (BSA) and QuilA but not in mice infested 5 days after the immunization. This effect was not observed in mock-infested mice and could not be attributed to the use of anesthetics. The antibody response was not merely delayed and the Th(1)/Th(2) balance appeared not altered. T-dependent zones and germinal centers in lymph nodes draining the tick bite site showed no apparent morphological alterations or shift in T cell subpopulations. However, the spleens of tick-infested mice had also an enlarged red pulp, indicating an increased extramedullary haematopoietic activity. [less ▲]

Detailed reference viewed: 69 (14 ULg)