References of "Luyten, Frank P"
     in
Bookmark and Share    
Peer Reviewed
See detailContrast-enhanced nanofocus computed tomography for virtual 3D histopathology and morphometric analysis of multiple skeletal tissues
Kerckhofs, Greet ULg; Papantoniou, Ioannis; Sonnaert, Maarten et al

Conference (2013)

Detailed reference viewed: 6 (2 ULg)
Full Text
Peer Reviewed
See detailRelating the Chondrocyte Gene Network to Growth Plate Morphology: From Genes to Phenotype
Kerkhofs, Johan ULg; Roberts, Scott J; Luyten, Frank P et al

in PLoS ONE (2012)

During endochondral ossification, chondrocyte growth and differentiation is controlled by many local signalling pathways. Due to crosstalks and feedback mechanisms, these interwoven pathways display a ... [more ▼]

During endochondral ossification, chondrocyte growth and differentiation is controlled by many local signalling pathways. Due to crosstalks and feedback mechanisms, these interwoven pathways display a network like structure. In this study, a large-scale literature based logical model of the growth plate network was developed. The network is able to capture the different states (resting, proliferating and hypertrophic) that chondrocytes go through as they progress within the growth plate. In a first corroboration step, the effect of mutations in various signalling pathways of the growth plate network was investigated. [less ▲]

Detailed reference viewed: 24 (8 ULg)
Full Text
Peer Reviewed
See detailEctopic bone formation by 3D porous calcium phosphate-Ti6Al4V hybrids produced by perfusion electrodeposition.
Chai, Yoke Chin; Kerckhofs, Greet ULg; Roberts, Scott J. et al

in Biomaterials (2012), 33(16), 4044-58

Successful clinical repair of non-healing skeletal defects requires the use of bone substitutes with robust bone inductivity and excellent biomechanical stability. Thus, three-dimensionally functionalised ... [more ▼]

Successful clinical repair of non-healing skeletal defects requires the use of bone substitutes with robust bone inductivity and excellent biomechanical stability. Thus, three-dimensionally functionalised porous calcium phosphate-Ti6Al4V (CaP-Ti) hybrids were produced by perfusion electrodeposition, and the in vitro and in vivo biological performances were evaluated using human periosteum derived cells (hPDCs). By applying various current densities at the optimised deposition conditions, CaP coatings with sub-micrometer to nano-scale porous crystalline structures and different ion dissolution kinetics were deposited on the porous Ti6Al4V scaffolds. These distinctive physicochemical properties caused a significant impact on in vitro proliferation, osteogenic differentiation, and matrix mineralisation of hPDCs. This includes a potential role of hPDCs in mediating osteoclastogenesis for the resorption of CaP coatings, as indicated by a significant down-regulation of osteoprotegerin (OPG) gene expression and by the histological observation of abundant multi-nucleated giant cells near to the coatings. By subcutaneous implantation, the produced hybrids induced ectopic bone formation, which was highly dependent on the physicochemical properties of the CaP coating (including the Ca(2+) dissolution kinetics and coating surface topography), in a cell density-dependent manner. This study provided further insight on stem cell-CaP biomaterial interactions, and the feasibility to produced bone reparative units that are predictively osteoinductive in vivo by perfusion electrodeposition technology. [less ▲]

Detailed reference viewed: 4 (0 ULg)
Peer Reviewed
See detailA Boolean network approach to developmental engineering
Kerkhofs, Johan ULg; Roberst, Scott J; Luyten, Frank P et al

Conference (2011, June 13)

Detailed reference viewed: 10 (0 ULg)
Full Text
Peer Reviewed
See detailThe combined bone forming capacity of human periosteal derived cells and calcium phosphates.
Roberts, Scott J; Geris, Liesbet ULg; Kerckhofs, Greet ULg et al

in Biomaterials (2011), 32(19), 4393-405

Current knowledge suggests that the periosteum, a fibrous tissue which covers the surface of all bones, contains a population of progenitor cells which mediate the repair of bone defects. In an effort to ... [more ▼]

Current knowledge suggests that the periosteum, a fibrous tissue which covers the surface of all bones, contains a population of progenitor cells which mediate the repair of bone defects. In an effort to optimise the utilisation of this source of cells for bone engineering, herein we describe the rational selection of calcium phosphate (CaP) containing materials, based on biomaterial properties, and evaluation of their combined bone forming capacity. Five different commercially available orthopaedic 3D matrices composed of CaP particles in an open collagen network (NuOss, CopiOs, Bio-Oss((R)), Collagraft and Vitoss((R))) were evaluated in vitro and in vivo with human periosteal derived cells (hPDCs). It was found that the cell-material combinations behaved quite differently in vivo, despite apparent in vitro similarities in gene expression profiles. Bone formation was highest within the NuOss/hPDC implant at 13.03%, which also contained the highest incidence of bone marrow formation. The bone formed in this implant was chimeric with approximately 65% originating from implanted cells. Upon analysis of human specific gene expression, although it was found that predominantly osteogenic differentiation was observed within NuOss/hPDC implants, a lesser induction of chondrogenic genes was also observed. The formation of a cartilage intermediate was confirmed by histology. Additionally the NuOss/hPDC implant integrated into the mouse environment with apparent active scaffold resorption. This study demonstrates the importance of matching a cell support/biological matrix with a cell type and subsequently has outlined parameters which can be used for the rational selection of biomaterials for bone engineering. [less ▲]

Detailed reference viewed: 26 (0 ULg)
Peer Reviewed
See detailA Boolean network model of the growth plate
Kerkhofs, Johan ULg; Roberts, Scott J; Luyten, Frank P et al

Poster (2010, November 26)

Detailed reference viewed: 8 (0 ULg)
Peer Reviewed
See detailA Boolean network model of the growth plate
Kerkhofs, Johan ULg; Roberts, Scott J; Luyten, Frank P et al

Poster (2010, October 10)

Detailed reference viewed: 6 (0 ULg)
Peer Reviewed
See detailBMP signalling in growth plate chondrocytes: a Boolean modelling approach
Kerkhofs, Johan ULg; Roberts, Scott J; Van Oosterwyck, Hans et al

Poster (2010, September 15)

Detailed reference viewed: 6 (0 ULg)