References of "Lisein, Jonathan"
     in
Bookmark and Share    
Full Text
See detailApplication des techniques de photogrammétrie par drone à la caractérisation des ressources forestières
Lisein, Jonathan ULg

Doctoral thesis (2016)

Une gestion raisonnée et multifonctionnelle des forêts n’est possible qu’avec une description à jour de l’état de la ressource naturelle. Les inventaires forestiers traditionnels, réalisés sur le terrain ... [more ▼]

Une gestion raisonnée et multifonctionnelle des forêts n’est possible qu’avec une description à jour de l’état de la ressource naturelle. Les inventaires forestiers traditionnels, réalisés sur le terrain, sont couteux et ne couvrent qu’un échantillonnage de la surface boisée. L’essor des drones civils pour la cartographie a initié une révolution dans le domaine de la télédétection environnementale. La polyvalence et la diversité des systèmes drones sont une aubaine pour la foresterie de précision. Ceux-ci sont utilisés pour la réalisation de cartographie très fine des habitats naturels avec une résolution temporelle et spatiale sans précédent. Nous explorons les possibilités d’utilisation de mini-drones pour la caractérisation quantitative et qualitative de la ressource forestière. Nous nous intéressons en particulier à l’estimation de la hauteur des arbres et à la caractérisation de la composition spécifique au sein de peuplements forestiers. La hauteur de la canopée est une variable dendrométrique de première importance : elle est un bon indicateur du stade de développement des peuplements et intervient notamment dans les estimations de biomasse ou de niveau de productivité. La composition spécifique est une information essentielle en regard des principales fonctions que remplit la forêt (conservation, production, récréation, etc). Nous avons comparé l’estimation de la hauteur des peuplements à partir de mesures LiDAR et celle obtenue par photogrammétrie. Bien que permettant une mesure de hauteur individuelle avec une incertitude de l’ordre de 1.04 m (RMSE) en feuillus, la photogrammétrie par drone sur des zones forestières est systématiquement moins précise que les mesures par LiDAR (RMSE de 0.83 m). Ces résultats sont cependant prometteurs, étant donné que la mesure sur terrain de la hauteur totale des arbres est également sujette à une importante imprécision. De plus, la grande flexibilité que confère les petits drones permet d’acquérir, au moment propice du stade de végétation, et l’information de relief de la canopée, et l’information spectrale. La période de fin de feuillaison, au début du mois de juin, s’est avérée le moment le plus propice à une discrimination automatique de cinq groupes d’essences feuillues (le chênes pédonculé, les bouleaux, l’érable sycomore, le frêne commun et les peupliers). Une erreur globale de classification des houppiers de 16% est obtenue avec des acquisitions monotemporelles, alors que l’utilisation d’images acquises à différentes dates permet encore d’améliorer cette classification (erreur globale de classification de 9% pour la meilleure combinaison de 3 dates). Les contraintes de la législation régissant l’utilisation des aéronefs sans pilote à bord restreignent le champs d’action des drones civils. Ainsi, afin d’assurer une sécurité pour tous les usagers de l’espace aérien, les opérations avec un drone sont limitées sous un seuil d’altitude et à une distance maximale du télépilote, ce qui ne permet pas une utilisation optimale de cette technologie pour la couverture de grands domaines forestiers (plusieurs milliers d’hectares). De plus, d’autres outils de télédétection utilisés en foresterie, tels que le LiDAR et l’imagerie satellite et aéroportée, sont plus compétitifs que les drones dès qu’il s’agit de couvrir de grandes surfaces (plusieurs milliers d’hectacre). C’est pourquoi nous pensons que les drones resterons un outils d’analyse de petites surfaces (dizaines voire centaines d’hectares), plus utiles à des fins de recherches scientifiques qu’à une utilisation en gestion forestière. [less ▲]

Detailed reference viewed: 15 (3 ULg)
Full Text
Peer Reviewed
See detailMapping of riparian invasive species with supervised classification of Unmanned Aerial System (UAS) imagery
Michez, Adrien ULg; Piégay, Hervé; Lisein, Jonathan ULg et al

in International Journal of Applied Earth Observation and Geoinformation (2016), 44

Riparian zones are key landscape features, representing the interface between terrestrial and aquatic ecosystems. Although they have been influenced by human activities for centuries, their degradation ... [more ▼]

Riparian zones are key landscape features, representing the interface between terrestrial and aquatic ecosystems. Although they have been influenced by human activities for centuries, their degradation has increased during the 20th century. Concomitant with (or as consequences of) these disturbances, the invasion of exotic species has increased throughout the world’s riparian zones. In our study, we propose a easily reproducible methodological framework to map three riparian invasive taxa using Unmanned Aerial Systems (UAS) imagery: Impatiens glandulifera Royle, Heracleum mantegazzianum Sommier and Levier, and Japanese knotweed (Fallopia sachalinensis (F. Schmidt Petrop.), Fallopia japonica (Houtt.) and hybrids). Based on visible and near-infrared UAS orthophoto, we derived simple spectral and texture image metrics computed at various scales of image segmentation (10,30, 45, 60 using eCognition software). Supervised classification based on the random forests algorithm was used to identify the most relevant variable (or combination of variables) derived from UAS imagery for mapping riparian invasive plant species. The models were built using 20% of the dataset, the rest of the dataset being used as a test set (80%). Except for H. mantegazzianum, the best results in terms of global accuracy were achieved with the finest scale of analysis (segmentation scale parameter = 10). The best values of overall accuracies reached 72%, 68%, and 97% for I. glandulifera, Japanese knotweed, and H. mantegazzianum respectively. In terms of selected metrics, simple spectral metrics (layer mean / camera brightness) were the most used. Our results also confirm the added value of texture metrics (GLCM derivatives) for mapping riparian invasive species. The results obtained for I. glandulifera and Japanese knotweed do not reach sufficient accuracies for operational applications. However, the results achieved for H. mantegazzianum are encouraging. The high accuracies values combined to relatively light model-inputs needed (delineation of a few umbels) make our approach a serious contender as a cost-effective tool to improve the field management of H. mantegazzianum. [less ▲]

Detailed reference viewed: 102 (32 ULg)
Full Text
Peer Reviewed
See detailClassification of riparian forest species and health condition using multi-temporal and hyperspatial imagery from unmanned aerial system
Michez, Adrien ULg; Piégay, Hervé; Lisein, Jonathan ULg et al

in Environmental Monitoring and Assessment (2016), 188(3),

Riparian forests are critically endangered many anthropogenic pressures and natural hazards. The importance of riparian zones has been acknowledged by European Directives, involving multi-scale monitoring ... [more ▼]

Riparian forests are critically endangered many anthropogenic pressures and natural hazards. The importance of riparian zones has been acknowledged by European Directives, involving multi-scale monitoring. The use of this very high resolution and hyperspatial imagery in a multi-temporal approach is an emerging topic. The trend is reinforced by the recent and rapid growth of the use of the unmanned aerial system (UAS), which has prompted the development of innovative methodology. Our study proposes a methodological framework to explore how a set of multi-temporal images acquired during a vegetative period can differentiate some of the deciduous riparian forest species and their health conditions. More specifically, the developed approach intends to identify, through a process of variable selection, which variables derived from UAS imagery and which scale of image analysis are the most relevant to our objectives. The methodological framework is applied to two study sites to describe the riparian forest through two fundamental characteristics: the species composition and the health condition. These characteristics were selected not only because of their use as proxies for the riparian zone ecological integrity but also because of their use for river management. The comparison of various scales of image analysis identified the smallest OBIA objects (ca. 1 m²) as the most relevant scale. Variables derived from spectral information (bands ratio's) were identified as the most appropriate, followed by variables related to the vertical structure of the forest. Classification results show good overall accuracies for the species composition of the riparian forest (five classes, 79.5 and 84.1 % for Site 1 and Site 2). The classification scenario regarding the health condition of the black alders of the Site 1 performed the best (90.6 %). The quality of the classification models developed with a UAS-based, cost-effective, and semi-automatic approach competes successfully with those developed using more expensive imagery, such as multispectral and hyperspectral airborne imagery. The high overall accuracy results obtained by the classification of the diseased alders open the door to applications dedicated to monitoring of the health conditions of riparian forest. Our methodological framework will allow UAS users to manage large imagery metrics datasets derived from those dense time series. [less ▲]

Detailed reference viewed: 45 (14 ULg)
Full Text
Peer Reviewed
See detailDiscrimination of deciduous tree species from time series of unmanned aerial system imagery
Lisein, Jonathan ULg; Michez, Adrien ULg; Claessens, Hugues ULg et al

in PLoS ONE (2015), 10(11),

Technology advances can revolutionize Precision Forestry by providing accurate and fine forest information at tree level. This paper addresses the question of how and particularly when Unmanned Aerial ... [more ▼]

Technology advances can revolutionize Precision Forestry by providing accurate and fine forest information at tree level. This paper addresses the question of how and particularly when Unmanned Aerial System (UAS) should be used in order to efficiently discriminate deciduous tree species. A time series of high resolution UAS imagery was collected to cover the growing season from leaf flush to leaf fall. Full benefit was taken of the temporal resolution of UAS acquisition, one of the most promising features of small drones. The disparity in forest tree phenology is at the maximum during early spring and late autumn. But the phenology state that optimized the classification result is the one that minimizes the spectral variation within tree species groups and, at the same time, maximizes the phenologic differences between species. Sunlit tree crowns (5 deciduous species groups) were classified using a Random Forest approach for monotemporal, two-date and three-date combinations. The end of leaf flushing was the most efficient single-date time window. Multitemporal datasets definitely improve the overall classification accuracy. But single-date high resolution orthophotomosaics, acquired on optimal time-windows, result in a very good classification accuracy (overall out of bag error of 16%). [less ▲]

Detailed reference viewed: 154 (62 ULg)
Full Text
Peer Reviewed
See detailAre unmanned aircraft systems (UASs) the future of wildlife monitoring? A review of accomplishments and challenges
Linchant, Julie ULg; Lisein, Jonathan ULg; Semeki, Jean et al

in Mammal Review (2015), 45

1. Regular monitoring of animal populations must be established to ensure wildlife protection, especially when pressure on animals is high. The recent development of drones or unmanned aircraft systems ... [more ▼]

1. Regular monitoring of animal populations must be established to ensure wildlife protection, especially when pressure on animals is high. The recent development of drones or unmanned aircraft systems (UASs) opens new opportunities. UASs have several advantages, including providing data at high spatial and temporal resolution, providing systematic, permanent data, having low operational costs and being low-risk for the operators. However, UASs have some constraints, such as short flight endurance. 2. We reviewed studies in which wildlife populations were monitored by using drones, described accomplishments to date and evaluated the range of possibilities UASs offer to provide new perspectives in future research. 3. We focused on four main topics: 1) the available systems and sensors; 2) the types of survey plan and detection possibilities; 3) contributions towards antipoaching surveillance; and 4) legislation and ethics. 4. We found that small fixed-wing UASs are most commonly used because these aircraft provide a viable compromise between price, logistics and flight endurance. The sensors are typically electro-optic or infrared cameras, but there is the potential to develop and test new sensors. 5. Despite various flight plan possibilities, mostly classical line transects have been employed, and it would be of great interest to test new methods to adapt to the limitations of UASs. Detection of many species is possible, but statistical approaches are unavailable if valid inventories of large mammals are the purpose. 6. Contributions of UASs to anti-poaching surveillance are not yet well documented in the scientific literature, but initial studies indicate that this approach could make important contributions to conservation in the next few years. 7. Finally, we conclude that one of the main factors impeding the use of UASs is legislation. Restrictions in the use of airspace prevent researchers from testing all possibilities, and adaptations to the relevant legislation will be necessary in future. [less ▲]

Detailed reference viewed: 118 (41 ULg)
Full Text
See detailDétection de l'érosion dans un bassin versant agricole par comparaison d'images multidates acquises par drone
Lisein, Jonathan ULg; Pineux, Nathalie ULg; Pierrot-Deseilligny, marc et al

Scientific conference (2015, March 26)

Detailed reference viewed: 68 (11 ULg)
Full Text
See detailDétection de l'érosion dans un bassin versant agricole par comparaison d'images multidates acquises par drone
Lisein, Jonathan ULg; Pineux, Nathalie ULg; Pierrot-Deseilligny, Marc et al

Conference (2014, June 26)

Detailed reference viewed: 126 (20 ULg)
Full Text
Peer Reviewed
See detailModélisation de la canopée forestière par photogrammétrie depuis des images acquises par drone
Lisein, Jonathan ULg; Bonnet, Stéphanie ULg; Lejeune, Philippe ULg et al

in Revue Française de Photogrammétrie et de Télédétection (2014), 206

Les petits drones civils développés à des fins de cartographie rapide offrent, à une échelle locale, de nombreuses opportunités pour le suivi d’écosystèmes forestiers. Nous utilisons dans cette recherche ... [more ▼]

Les petits drones civils développés à des fins de cartographie rapide offrent, à une échelle locale, de nombreuses opportunités pour le suivi d’écosystèmes forestiers. Nous utilisons dans cette recherche des images acquises avec un avion sans pilote à voilure fixe afin de modéliser la surface de la canopée de peuplements feuillus. Une chaine de traitements photogrammétriques est mise en place au moyen des outils de la suite open source MICMAC. Nous comparons différentes stratégies de corrélation automatique d’images afin de déterminer le paramétrage qui permet au mieux de reconstruire les détails de la canopée. Bien que le modèle de surface photogrammétrique ne permette pas d’appréhender les petites dépressions et élévations des houppiers, nos résultats montrent que l’utilisation conjointe d’images drone et d’un modèle numérique de terrain LiDAR permet d’estimer la hauteur dominante des peuplements feuillus. Ces résultats confirment la faisabilité de modéliser l’évolution de la hauteurs des peuplements forestiers depuis une série temporelle d’images drone. [less ▲]

Detailed reference viewed: 255 (46 ULg)
Full Text
Peer Reviewed
See detailThe evaluation of unmanned aerial systems-based photogrammetry and terrestrial laser scanning to generate DEMs of agricultural watersheds
Ouedraogo, Mohamar ULg; Degré, Aurore ULg; Debouche, Charles ULg et al

in Geomorphology (2014)

Agricultural watersheds tend to be places of intensive farming activities that permanently modify their microtopography. The surface characteristics of the soil vary depending on the crops that are ... [more ▼]

Agricultural watersheds tend to be places of intensive farming activities that permanently modify their microtopography. The surface characteristics of the soil vary depending on the crops that are cultivated in these areas. Agricultural soil microtopography plays an important role in the quantification of runoff and sediment transport because the presence of crops, crop residues, furrows and ridges may impact the direction of water flow. To better assess such phenomena, 3-D reconstructions of high-resolution agricultural watershed topography is essential. Fine-resolution topographic data collection technologies can be used to discern highly detailed elevation variability in these areas. Knowledge of the strengths and weaknesses of existing technologies used for data collection on agricultural watersheds may be helpful in choosing an appropriate technology. This study assesses the suitability of terrestrial laser scanning (TLS) and unmanned aerial system (UAS) photogrammetry for collecting the fine-resolution topographic data required to generate accurate, high-resolution digital elevation models (DEMs) in a small watershed area (12 ha). Because of farming activity, 14 TLS scans (≈ 25 points m− 2) were collected without using high-definition surveying (HDS) targets, which are generally used to mesh adjacent scans. To evaluate the accuracy of the DEMs created from the TLS scan data, 1,098 ground control points (GCPs) were surveyed using a real time kinematic global positioning system (RTK-GPS). Linear regressions were then applied to each DEM to remove vertical errors from the TLS point elevations, errors caused by the non-perpendicularity of the scanner’s vertical axis to the local horizontal plane, and errors correlated with the distance to the scanner’s position. The scans were then meshed to generate a DEMTLS with a 1 × 1 m spatial resolution. The Agisoft PhotoScan and MicMac software packages were used to process the aerial photographs and generate a DEMPSC (Agisoft PhotoScan) and DEMMCM (MicMac), respectively, with spatial resolutions of 1 × 1 m. Comparing the DEMs with the 1,098 GCPs showed that the DEMTLS was the most accurate data product, with a root mean square error (RMSE) of 4.5 cm, followed by the DEMMCM and the DEMPSC, which had RMSE values of 9.0 and 13.9 cm, respectively. The DEMPSC had absolute errors along the border of the study area that ranged from 15.0 to 52.0 cm, indicating the presence of systematic errors. Although the derived DEMMCM was accurate, an error analysis along a transect showed that the errors in the DEMMCM data tended to increase in areas of lower elevation. Compared with TLS, UAS is a promising tool for data collection because of its flexibility and low operational cost. However, improvements are needed in the photogrammetric processing of the aerial photographs to remove non-linear distortions. [less ▲]

Detailed reference viewed: 83 (26 ULg)
Full Text
Peer Reviewed
See detailDEM time series of an agricultural watershed
Pineux, Nathalie ULg; Lisein, Jonathan ULg; Swerts, Gilles ULg et al

in Geophysical Research Abstracts (2014), 16

the field data come from plot scale studies, the watershed scale seems to be more appropriate to understand them. Currently, small unmanned aircraft systems and images treatments are improving. In this ... [more ▼]

the field data come from plot scale studies, the watershed scale seems to be more appropriate to understand them. Currently, small unmanned aircraft systems and images treatments are improving. In this way, 3D models are built from multiple covering shots. When techniques for large areas would be to expensive for a watershed level study or techniques for small areas would be too time consumer, the unmanned aerial system seems to be a promising solution to quantify the erosion and deposition patterns. The increasing technical improvements in this growth field allow us to obtain a really good quality of data and a very high spatial resolution with a high Z accuracy. In the center of Belgium, we equipped an agricultural watershed of 124 ha. For three years (2011-2013), we have been monitoring weather (including rainfall erosivity using a spectropluviograph), discharge at three different locations, sediment in runoff water, and watershed microtopography through unmanned airborne imagery (Gatewing X100). We also collected all available historical data to try to capture the “long-term” changes in watershed morphology during the last decades: old topography maps, soil historical descriptions, etc. An erosion model (LANDSOIL) is also used to assess the evolution of the relief. Short-term evolution of the surface are now observed through flights done at 200m height. The pictures are taken with a side overlap equal to 80%. To precisely georeference the DEM produced, ground control points are placed on the study site and surveyed using a Leica GPS1200 (accuracy of 1cm for x and y coordinates and 1.5cm for the z coordinate). Flights are done each year in December to have an as bare as possible ground surface. Specific treatments are developed to counteract vegetation effect because it is know as key sources of error in the DEM produced by small unmanned aircraft systems. The poster will present the older and more recent changes of relief in this intensely exploited watershed and notably show how unmanned airborne imagery might be of help in DEM dynamic modelling to support soil conservation research. [less ▲]

Detailed reference viewed: 51 (20 ULg)
Full Text
See detailUtilisation des drones comme outil de suivi de travaux de restauration : génération de séries temporelles d'orthomosaïques à très haute résolution et de modèles numériques de surface
Michez, Adrien ULg; Lisein, Jonathan ULg; Geerts, Cédric ULg et al

Poster (2013, October 15)

D'une invention initialement militaire, les drones - et les applications qui dérivent de leurs utilisation - tendent à se banaliser au sein du domaine civil. En terme d'applications géographiques, les ... [more ▼]

D'une invention initialement militaire, les drones - et les applications qui dérivent de leurs utilisation - tendent à se banaliser au sein du domaine civil. En terme d'applications géographiques, les micro-drones (< 2 kg) occupent un segment nouveau dans les techniques d’acquisition d'informations, à mi-chemin entre deux segments plus classiques, représentés par les techniques d'acquisitions « terrain » (LiDAR terrestre, lever topographique, cartographie GPS, ..) et l'imagerie aérienne (caméra métrique, LiDAR aérien, imagerie satellitale). A l'aide d'un micro-drone X100 (Gatewing-Trimble), l'Unité GRFMN a effectué différents survols du projet de restauration du ruisseau du Morby, entrepris dans le cadre du projet Life+ Walphy. Les survols ont permis la réalisation d'orthomosaïques et de MNS (à l'aide d'Agisoft Photoscan) aux différentes étapes du chantier. Une évaluation de la qualité des MNS photogrammétriques générés est réalisée sur base de données LiDAR aérien disponible sur la zone. Une comparaison des coûts sera également réalisée entre les différentes techniques d'acquisition de données topographiques déployées sur le site lors du projet : MNS photogrammétriques UAV et caméra large format, LiDAR aérien. [less ▲]

Detailed reference viewed: 203 (48 ULg)
Full Text
Peer Reviewed
See detailAerial surveys using an Unmanned Aerial System (UAS): comparison of different methods for estimating the surface area of sampling strips
Lisein, Jonathan ULg; Linchant, Julie ULg; Lejeune, Philippe ULg et al

in Tropical Conservation Science (2013), 6(4), 506-520

Conservation of natural ecosystems requires regular monitoring of biodiversity, including the estimation of wildlife density. Recently, unmanned aerial systems (UAS) have become more available for ... [more ▼]

Conservation of natural ecosystems requires regular monitoring of biodiversity, including the estimation of wildlife density. Recently, unmanned aerial systems (UAS) have become more available for numerous civilian applications. The use of small drones for wildlife surveys as a surrogate for manned aerial surveys is becoming increasingly attractive and has already been implemented with some success. This raises the question of how to process UAS imagery in order to determine the surface area of sampling strips within an acceptable confidence level. For the purpose of wildlife surveys, the estimation of sampling strip surface area needs to be both accurate and quick, and easy to implement. As GPS and an inertial measurement units are commonly integrated within unmanned aircraft platforms, two methods of direct georeferencing were compared here. On the one hand, we used the image footprint projection (IFP) method, which utilizes collinearity equations on each image individually. On the other hand, the Structure from Motion (SfM) technique was used for block orientation and georeferencing. These two methods were compared on eight sampling strips. An absolute orientation of the strip was determined by indirect georeferencing using ground control points. This absolute orientation was considered as the reference and was used for validating the other two methods. The IFP method was demonstrated to be the most accurate and the easiest to implement. It was also found to be less demanding in terms of image quality and overlap. However, even though a flat landscape is the type most widely encountered in wildlife surveys in Africa, we recommend estimating IFP sensitivity at an accentuation of the relief. [less ▲]

Detailed reference viewed: 790 (31 ULg)
Full Text
See detailClassification of riparian forest species (individual tree level) using UAV-based Canopy Height Model and multi-temporal orthophotos (Vielsalm, Eastern Belgium)
Michez, Adrien ULg; Lisein, Jonathan ULg; Toromanoff, François ULg et al

Poster (2013, September 09)

Introduction : Despite their relatively low area coverage, riparian forests are central landscape features providing several ecosystem services. Nevertheless, they are critically endangered in European ... [more ▼]

Introduction : Despite their relatively low area coverage, riparian forests are central landscape features providing several ecosystem services. Nevertheless, they are critically endangered in European countries by human pressures (livestock grazing, land use conflicts, canalizations, waste water, ...) andalso by natural hazards such as the recent black alder (Alnus glutinosa) extensive decline caused by Phytophthora alni. In this study UAV is used to improve the characterization of riparian areas. Riparian forest species are identified at the individual tree level. The health condition of black alder is assessed. For this purpose a computer based approach has been developped, with low needs of specific operator ability or training. Methods : We used the Gatewing X100 to acquire 16 aerial photographs datasets (7 in classic RGB and 9 in RG NIR) during 5 days (form Augustus to October 2012). We processed a CHM in ArcGIS by combining a national Digital Terrain Model with a photogrammetric DSM generated from a single flight photographs dataset with the "MicMac" opensource platform. The 16 orthophotos were computed with Agisoft Photoscan. Based on the CHM and some basic vegetation index (mean NDVI), a classification/segmentation process was developped in eCognition allowing tree crown extraction. An amount of 113 metrics were computed in eCognition for every tree crown object. The metrics were both derived from the CHM raster and spectral information. Metrics were computed by band (object spectral mean and CHM mean, Harralick entropy, Skewness) but also with band combination (Green NDVI and NDVI). A reference dataset was also acquired through a field survey of 624 individual tree positions accurately localized. The health condition of the black alder was recorded during the field survey. A supervised classification algorithm was developed in R (Random Forest package). Results : Several classification trees were assessed trough global accuracy using the Out Of Bag (OOB) error. The best global accuracy (82%) was obtained when distinguishing the black alder (with no regards for health condition during field survey) from the rest of riparian forest objects. The global accuracy tended to decline when other species were added. When separating healthy black alders from those with symptoms, the global accuracy is 77%. Conclusions : Our study highlights the potential of UAV-based multitemporal orthophotos to identify riparian forest species and health conditions at the tree level. Future studies will focus on quick radiometrics corrections. This could improve global accuracy by reducing the variability caused by illumination conditions [less ▲]

Detailed reference viewed: 281 (37 ULg)