References of "Lin, Jian-Sheng"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailEffects of the H(3) receptor inverse agonist thioperamide on cocaine-induced locomotion in mice: role of the histaminergic system and potential pharmacokinetic interactions.
Brabant, Christian ULg; Alleva, Livia ULg; Grisar, Thierry ULg et al

in Psychopharmacology (2009), 202(4), 673-87

RATIONALE: Previous studies have shown that intraperitoneal injections of thioperamide, an imidazole-based H(3) receptor inverse agonist that enhances histamine release in the brain, potentiate cocaine ... [more ▼]

RATIONALE: Previous studies have shown that intraperitoneal injections of thioperamide, an imidazole-based H(3) receptor inverse agonist that enhances histamine release in the brain, potentiate cocaine-induced hyperlocomotion. The present study examined the involvement of the histaminergic system in these effects of thioperamide in mice. MATERIALS AND METHODS: We investigated whether immepip, a selective H(3) agonist, could reverse the potentiating effects of thioperamide. Moreover, the non-imidazole H(3) inverse agonist A-331440 was tested on the locomotor effects of cocaine. Using high-performance liquid chromatography with ultraviolet detection, cocaine plasma concentrations were measured to study potential drug-drug interactions between thioperamide and cocaine. Finally, thioperamide was tested on the locomotor effects of cocaine in histamine-deficient knockout mice in order to determine the contribution of histamine to the modulating effects of thioperamide. RESULTS: Thioperamide potentiated cocaine-induced hyperlocomotion in normal mice, and to a higher extent, in histamine-deficient knockout mice. A-331440 only slightly affected the locomotor effects of cocaine. Immepip did not alter cocaine-induced hyperactivity but significantly reduced the potentiating actions of thioperamide on cocaine's effects. Finally, plasma cocaine concentrations were more elevated in mice treated with thioperamide than in mice that received cocaine alone. CONCLUSIONS: The present results indicate that histamine released by thioperamide through the blockade of H(3) autoreceptors is not involved in the ability of this compound to potentiate cocaine induced-hyperactivity. Our data suggest that thioperamide, at least at 10 mg/kg, increases cocaine-induced locomotion through the combination of pharmacokinetic effects and the blockade of H(3) receptors located on non-histaminergic neurons. [less ▲]

Detailed reference viewed: 80 (12 ULg)
Full Text
Peer Reviewed
See detailThe psychostimulant and rewarding effects of cocaine in histidine decarboxylase knockout mice do not support the hypothesis of an inhibitory function of histamine on reward
Brabant, Christian ULg; Quertemont, Etienne ULg; Anaclet, Christelle et al

in Psychopharmacology (2007), 190(2), 251-263

RATIONALE AND OBJECTIVES: Lesion studies have shown that the tuberomammillary nucleus (TM) exerts inhibitory effects on the brain reward system. To determine whether histamine from the TM is involved in ... [more ▼]

RATIONALE AND OBJECTIVES: Lesion studies have shown that the tuberomammillary nucleus (TM) exerts inhibitory effects on the brain reward system. To determine whether histamine from the TM is involved in that reward inhibitory function, we assessed the stimulant and rewarding effects of cocaine in knockout mice lacking histidine decarboxylase (HDC KO mice), the histamine-synthesizing enzyme. If histamine actually plays an inhibitory role in reward, then it would be expected that mice lacking histamine would be more sensitive to the behavioral effects of cocaine. MATERIALS AND METHODS: The first experiment characterized spontaneous locomotion and cocaine-induced hyperactivity (0, 8, and 16 mg/kg, i.p.) in wild-type and HDC KO mice. The rewarding effects of cocaine were investigated in a second experiment with the place-conditioning technique. RESULTS: The first experiment demonstrated that histidine decarboxylase mice showed reduced exploratory behaviors but normal habituation to the test chambers. After habituation to the test chambers, HDC KO mice were slightly, but significantly, less stimulated by cocaine than control mice. This finding was replicated in the second experiment, when cocaine-induced activity was monitored with the place-conditioning apparatus. Furthermore, a significant place preference was present in both genotypes for 8 and 16 mg/kg cocaine, but not for 2 and 4 mg/kg. CONCLUSIONS: Our data confirm previous results demonstrating that HDC KO mice show reduced exploratory behaviors. However, contrary to the hypothesis that histamine plays an inhibitory role in reward, histamine-deficient mice were not more responsive to the psychostimulant effects of cocaine. [less ▲]

Detailed reference viewed: 40 (4 ULg)