References of "Leuther, Thomas"
     in
Bookmark and Share    
Full Text
See detailProjectively Invariant Quantization in Super Geometry
Leuther, Thomas ULg

Doctoral thesis (2013)

Detailed reference viewed: 26 (8 ULg)
Full Text
Peer Reviewed
See detailGeodesics on a supermanifold and projective equivalence of superconnections
Leuther, Thomas ULg; Radoux, Fabian ULg; Tuynman, Gijs

in Journal of Geometry & Physics (2013), 67

Detailed reference viewed: 25 (1 ULg)
Full Text
See detailQuantifications en supergéométrie
Leuther, Thomas ULg

Poster (2012, February)

Le poster présente de façon vulgarisée certaines idées sous-jacentes à la recherche de quantifications invariantes en supergéométrie.

Detailed reference viewed: 40 (16 ULg)
Full Text
Peer Reviewed
See detailOn a Lie Algebraic Characterization of Vector Bundles
Lecomte, Pierre ULg; Leuther, Thomas ULg; Zihindula Mushengezi, Elie ULg

in Symmetry, Integrability and Geometry: Methods and Applications [=SIGMA] (2012)

We prove that a vector bundle E -> M is characterized by the Lie algebra generated by all differential operators on E which are eigenvectors of the Lie derivative in the direction of the Euler vector ... [more ▼]

We prove that a vector bundle E -> M is characterized by the Lie algebra generated by all differential operators on E which are eigenvectors of the Lie derivative in the direction of the Euler vector field. Our result is of Pursell-Shanks type but it is remarkable in the sense that it is the whole f ibration that is characterized here. The proof relies on a theorem of [Lecomte P., J. Math. Pures Appl. (9) 60 (1981), 229{239] and inherits the same hypotheses. In particular, our characterization holds only for vector bundles of rank greater than 1. [less ▲]

Detailed reference viewed: 40 (9 ULg)
Full Text
Peer Reviewed
See detailOn osp(p+1,q+1|2r)-equivariant quantizations
Leuther, Thomas ULg; Mathonet, Pierre ULg; Radoux, Fabian ULg

in Journal of Geometry & Physics (2012), 62

Detailed reference viewed: 29 (11 ULg)
Full Text
See detailCréer son document écrit avec LaTeX
Leuther, Thomas ULg

Conference (2011, May 26)

LaTeX est un traitement de texte orienté contenu, gratuit et qui produit des documents de qualité typographique irréprochable. LaTeX nécessite un petit apprentissage, mais il s’agit d’un investissement ... [more ▼]

LaTeX est un traitement de texte orienté contenu, gratuit et qui produit des documents de qualité typographique irréprochable. LaTeX nécessite un petit apprentissage, mais il s’agit d’un investissement dont on récolte très vite les fruits. Le document présente le fonctionnement général de LaTeX, les notions de base nécessaires à la rédaction d'un premier document de type article et comment devenir autonome dans l’apprentissage. [less ▲]

Detailed reference viewed: 41 (11 ULg)
Full Text
Peer Reviewed
See detailNatural and Projectively Invariant Quantizations on Supermanifolds
Leuther, Thomas ULg; Radoux, Fabian ULg

in Symmetry, Integrability and Geometry: Methods and Applications [=SIGMA] (2011)

The existence of a natural and projectively invariant quantization in the sense of P. Lecomte [Progr. Theoret. Phys. Suppl. (2001), no. 144, 125-132] was proved by M. Bordemann [math.DG/0208171], using ... [more ▼]

The existence of a natural and projectively invariant quantization in the sense of P. Lecomte [Progr. Theoret. Phys. Suppl. (2001), no. 144, 125-132] was proved by M. Bordemann [math.DG/0208171], using the framework of Thomas-Whitehead connections. We extend the problem to the context of supermanifolds and adapt M. Bordemann's method in order to solve it. The obtained quantization appears as the natural globalization of the pgl(n+1|m)-equivariant quantization on Rn|m constructed by P. Mathonet and F. Radoux in [arXiv:1003.3320]. Our quantization is also a prolongation to arbitrary degree symbols of the projectively invariant quantization constructed by J. George in [arXiv:0909.5419] for symbols of degree two. [less ▲]

Detailed reference viewed: 45 (18 ULg)
Full Text
See detailAffine bundles are affine spaces
Leuther, Thomas ULg

Poster (2010, September 13)

We show that the category of affine bundles over a smooth manifold M is equivalent to that of affine spaces modeled on locally free modules over the algebra of smooth functions on M.

Detailed reference viewed: 30 (16 ULg)