References of "Leo, A"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailControlling flux flow dissipation by changing flux pinning in superconducting films
Grimaldi, G; Leo, A; Nigro, A et al

in Applied Physics Letters (2012), 100

We study the flux flow state in superconducting materials characterized by rather strong intrinsic pinning, such as Nb, NbN, and nanostructured Al thin films, in which we drag the superconducting ... [more ▼]

We study the flux flow state in superconducting materials characterized by rather strong intrinsic pinning, such as Nb, NbN, and nanostructured Al thin films, in which we drag the superconducting dissipative state into the normal state by current biasing. We modify the vortex pinning strength either by ion irradiation, by tuning the measuring temperature or by including artificial pinning centers. We measure critical flux flow voltages for all materials and the same effect is observed: switching to low flux flow dissipations at low fields for an intermediate pinning regime. This mechanism offers a way to additionally promote the stability of the superconducting state. [less ▲]

Detailed reference viewed: 14 (2 ULg)
Full Text
Peer Reviewed
See detailInfluence of artificial pinning on vortex lattice instability in superconducting films
Silhanek, Alejandro ULg; Leo, A.; Grimaldi, G. et al

in New Journal of Physics (2012), 14

In superconducting films under an applied dc current, we analyze experimentally and theoretically the influence of engineered pinning on the vortex velocity at which the flux-flow dissipation undergoes an ... [more ▼]

In superconducting films under an applied dc current, we analyze experimentally and theoretically the influence of engineered pinning on the vortex velocity at which the flux-flow dissipation undergoes an abrupt transition from low to high resistance. We argue, based on a nonuniform distribution of vortex velocity in the sample, that in strongly disordered systems the mean critical vortex velocity for flux-flow instability (i) has a nonmonotonic dependence on magnetic field and (ii) decreases as the pinning strength is increased. These findings challenge the generally accepted microscopic model of Larkin and Ovchinnikov (1979 J. Low. Temp. Phys. 34 409) and all subsequent refinements of this model which ignore the presence of pinning centers. [less ▲]

Detailed reference viewed: 24 (4 ULg)
Full Text
Peer Reviewed
See detailPinning effects on the vortex critical velocity in type-II superconducting thin films
Leo, A.; Grimaldi, G.; Nigro, A. et al

in Physica C: Superconductivity (2010), 470(19), 904-906

We study the influence of artificial pinning centers on the vortex critical velocity in Al thin films deposited on top of a periodic array of Permalloy (FeNi) square rings. We demonstrate that the field ... [more ▼]

We study the influence of artificial pinning centers on the vortex critical velocity in Al thin films deposited on top of a periodic array of Permalloy (FeNi) square rings. We demonstrate that the field dependence of the flux flow velocity strongly depends on the particular magnetic state of the rings. In particular, we find that, even when the rings are in a flux closure state, i.e. with little stray field, the vortex critical velocity shows a non-monotonic magnetic field dependence. This behaviour is in sharp contrast with the results obtained in a reference plain film, with no rings underneath. A comparison with the intrinsic strong pinning Nb films previously studied, suggests an interpretation in terms of a channel-like motion of vortices, here induced by the artificial pinning structure. (C) 2010 Elsevier B.V. All rights reserved. [less ▲]

Detailed reference viewed: 8 (1 ULg)
Full Text
Peer Reviewed
See detailPinning centers produced by magnetic microstructures
Silhanek, Alejandro ULg; Van de Vondel, J.; Leo, A. et al

in Superconductor Science and Technology (2009), 22(3),

We investigate the flux pinning and dynamic properties of superconducting vortices in an Al film with an array of magnetic bars deposited on top. The dimensions of each bar are chosen in such a way that ... [more ▼]

We investigate the flux pinning and dynamic properties of superconducting vortices in an Al film with an array of magnetic bars deposited on top. The dimensions of each bar are chosen in such a way that they host a single magnetic domain. These micromagnets are distributed periodically in a rectangular array with 0.5 mu m separation parallel to the longest side of the bars and displaced laterally by a distance w. We show that, for w > Lambda, where Lambda is the effective field penetration depth, the pinning strength is almost independent of w whereas the critical temperature at zero field, T(c)(0), decreases as similar to w(-1). For w < Lambda the opposite behavior is observed, i.e. T(c)(0) seems to saturate to a nearly w-independent value and the transition from large to small w is accompanied by a large suppression of the critical current j(c) together with a clear change in the shape of the current-voltage characteristics. In particular, the substantial weakening of the pinning potential for w < Lambda gives rise to an unexpected flux flow response. The field evolution of this regime allows us to determine whether the magnetic bars induce vortex-antivortex pairs in the system. The present findings suggest that practical application of magnetic pinning centers are restricted to low field values. [less ▲]

Detailed reference viewed: 3 (0 ULg)
Full Text
Peer Reviewed
See detailComment on "Transverse rectification in superconducting thin films with arrays of asymmetric defects" [Appl. Phys. Lett. 91, 062505 (2007)]
Silhanek, Alejandro ULg; de Vondel, J Van; Moshchalkov, V. V. et al

in Applied Physics Letters (2008), 92(17),

Detailed reference viewed: 9 (2 ULg)