References of "Lenartz, Fabian"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailGeneration of analysis and consistent error fields using the Data Interpolating Variational Analysis (Diva)
Troupin, Charles ULg; Barth, Alexander ULg; Sirjacobs, Damien ULg et al

in Ocean Modelling (2012), 52-53

The Data Interpolating Variational Analysis (Diva) is a method designed to interpolate irregularly-spaced, noisy data onto any desired location, in most cases on regular grids. It is the combination of a ... [more ▼]

The Data Interpolating Variational Analysis (Diva) is a method designed to interpolate irregularly-spaced, noisy data onto any desired location, in most cases on regular grids. It is the combination of a particular methodology, based on the minimisation of a cost function, and a numerically efficient method, based on a finite-element solver. The cost function penalises the misfit between the observations and the reconstructed field, as well as the regularity or smoothness of the field. The intrinsic advantages of the method are its natural way to take into account topographic and dynamic constraints (coasts, advection, . . . ) and its capacity to handle large data sets, frequently encountered in oceanography. The method provides gridded fields in two dimensions, usually in horizontal layers. Three-dimension fields are obtained by stacking horizontal layers. In the present work, we summarize the background of the method and describe the possible methods to compute the error field associated to the analysis. In particular, we present new developments leading to a more consistent error estimation, by determining numerically the real covariance function in Diva, which is never formulated explicitly, contrarily to Optimal Interpolation. The real covariance function is obtained by two concurrent executions of Diva, the first providing the covariance for the second. With this improvement, the error field is now perfectly consistent with the inherent background covariance in all cases. A two-dimension application using salinity measurements in the Mediterranean Sea is presented. Applied on these measurements, Optimal Interpolation and Diva provided very similar gridded fields (correlation: 98.6%, RMS of the difference: 0.02). The method using the real covariance produces an error field similar to the one of OI, except in the coastal areas. [less ▲]

Detailed reference viewed: 303 (47 ULg)
Full Text
See detailAdvanced Data Interpolating Variational Analysis. Application to climatological data
Troupin, Charles ULg; Sirjacobs, Damien ULg; Rixen, Michel et al

Poster (2011, April)

DIVA (Data Interpolating Variational Analysis) is a variational analysis tool designed to interpolate irregularly-spaced, noisy data onto any desired location, in most cases on regular grids. It is the ... [more ▼]

DIVA (Data Interpolating Variational Analysis) is a variational analysis tool designed to interpolate irregularly-spaced, noisy data onto any desired location, in most cases on regular grids. It is the combination of a particular methodology, based on the minimization of a functional, and a numerically efficient resolution method, based on a finite elements solver. The intrinsic advantages of DIVA are its natural way to take into account topographic and dynamic constraints (coasts, advection, ...) and its capacity to handle large data sets, frequently encountered in oceanography. In the present work, we describe various improvements to the variational analysis tool. The most significant advance is the development of a full error calculation, whilst until now, only an approximate error-field estimate was available. The key issue is the numerical determination of the real covariance function in DIVA, which is not formulated explicitly. This is solved by two concurrent executions of two DIVA, one providing the covariance for the other. The new calculation of the error field is now perfectly coherent with the inherent background covariance in all cases. The correlation length, which was previously set uniform over the computational domain, is now allowed to vary spatially. The efficiency of the tools for estimating the signal-to-noise ratio, through generalized cross-validation, has also been improved. Finally, a data quality-control method is implemented and allows one to detect possible outliers, based on statistics of the data-reconstruction misfit. The added value of these features are illustrated in the case of a large data set of salinity measured in the Mediterranean Sea. Several analyses are performed with different parameters in order to demonstrate their influence on the interpolated fields. In particular, we examine the benefits of using the parameter optimization tools and the advection constraint. The results are validated by means of a subset of data set apart for an independent validation. The corresponding errors fields are estimated using different methods and underline the role of the data coverage. [less ▲]

Detailed reference viewed: 88 (17 ULg)
Full Text
See detailAdvanced Data Interpolating Variational Analysis. Application to climatological data.
Troupin, Charles ULg; Sirjacobs, Damien ULg; Rixen, Michel et al

Poster (2011, March 21)

Detailed reference viewed: 20 (4 ULg)
Full Text
Peer Reviewed
See detailEvolution of Western Mediterranean Sea Surface Temperature between 1985 and 2005
Troupin, Charles ULg; Lenartz, Fabian; Sirjacobs, Damien ULg et al

Conference (2009, April 20)

Detailed reference viewed: 15 (2 ULg)
Full Text
See detailUsing Diva on large datasets: applications and tips
Troupin, Charles ULg; Ouberdous, Mohamed ULg; Lenartz, Fabian et al

Scientific conference (2008, October 16)

Detailed reference viewed: 17 (0 ULg)