References of "Lefèvre, L"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailModelling a high-mass red giant observed by CoRoT
Baudin, F.; Barban, C.; Goupil, M. J. et al

in Astronomy and Astrophysics (2012), 538

Context. The advent of space-borne photometers such as CoRoT and Kepler has opened up new fields in asteroseismology. This is especially true for red giants as only a few of these stars were known to ... [more ▼]

Context. The advent of space-borne photometers such as CoRoT and Kepler has opened up new fields in asteroseismology. This is especially true for red giants as only a few of these stars were known to oscillate with small amplitude, solar-like oscillations before the launch of CoRoT. <BR /> Aims: The G6 giant HR 2582 (HD 50890) was observed by CoRoT for approximately 55 days. We present here the analysis of its light curve and the characterisation of the star using different observables, such as its location in the Hertzsprung-Russell diagram and seismic observables. <BR /> Methods: Mode frequencies are extracted from the observed Fourier spectrum of the light curve. Numerical stellar models are then computed to determine the characteristics of the star (mass, age, etc.) from the comparison with observational constraints. <BR /> Results: We provide evidence for the presence of solar-like oscillations at low frequency, between 10 and 20 μHz, with a regular spacing of (1.7 ± 0.1) μHz between consecutive radial orders. Only radial modes are clearly visible. From the models compatible with the observational constraints used here, We find that HR 2582 (HD 50890) is a massive star with a mass in the range (3-5 M[SUB]&sun;[/SUB]), clearly above the red clump. It oscillates with rather low radial order (n = 5-12) modes. Its evolutionary stage cannot be determined with precision: the star could be on the ascending red giant branch (hydrogen shell burning) with an age of approximately 155 Myr or in a later phase (helium burning). In order to obtain a reasonable helium amount, the metallicity of the star must be quite subsolar. Our best models are obtained with a mixing length significantly smaller than that obtained for the Sun with the same physical description (except overshoot). The amount of core overshoot during the main-sequence phase is found to be mild, of the order of 0.1 H[SUB]p[/SUB]. <BR /> Conclusions: HR 2582 (HD 50890) is an interesting case as only a few massive stars can be observed due to their rapid evolution compared to less massive red giants. HR 2582 (HD 50890) is also one of the few cases that can be used to validate the scaling relations for massive red giants stars and its sensitivity to the physics of the star. The CoRoT space mission, launched on 2006 December 27, was developed and is operated by the CNES with participation of the Science Programs of ESA; ESA's RSSD, Austria, Belgium, Brazil, Germany and Spain. [less ▲]

Detailed reference viewed: 6 (0 ULg)
Full Text
Peer Reviewed
See detailSolar-Like Oscillations in a Massive Star
Belkacem, K.; Samadi, R.; Goupil, M.-J. et al

in Science (2009), 324

Seismology of stars provides insight into the physical mechanisms taking place in their interior, with modes of oscillation probing different layers. Low-amplitude acoustic oscillations excited by ... [more ▼]

Seismology of stars provides insight into the physical mechanisms taking place in their interior, with modes of oscillation probing different layers. Low-amplitude acoustic oscillations excited by turbulent convection were detected four decades ago in the Sun and more recently in low-mass main-sequence stars. Using data gathered by the Convection Rotation and Planetary Transits mission, we report here on the detection of solar-like oscillations in a massive star, V1449 Aql, which is a known large-amplitude (beta Cephei) pulsator. [less ▲]

Detailed reference viewed: 28 (14 ULg)
Full Text
Peer Reviewed
See detailFirst asteroseismic results from CoRoT
Michel, Eric; Baglin, A.; Weiss, W. W. et al

in Communications in Asteroseismology (2008), 156

About one year after the end of the first observational run and six months after the first CoRoT data delivery, we comment the data exploitation progress for different types of stars. We consider first ... [more ▼]

About one year after the end of the first observational run and six months after the first CoRoT data delivery, we comment the data exploitation progress for different types of stars. We consider first results to illustrate how these data of unprecedented quality shed a new light on the field of stellar seismology. [less ▲]

Detailed reference viewed: 39 (18 ULg)
Full Text
Peer Reviewed
See detailFirst asteroseismic results from CoRoT
Michel, Eric; Baglin, Annie; Weiss, W.W. et al

in Communication in Asteroseismology (2008), 157

About one year after the end of the first observational run and six months after the first CoRoT data delivery, we comment the data exploitation progress for different types of stars. We consider first ... [more ▼]

About one year after the end of the first observational run and six months after the first CoRoT data delivery, we comment the data exploitation progress for different types of stars. We consider first results to illustrate how these data of unprecedented quality shed a new light on the field of stellar seismology. [less ▲]

Detailed reference viewed: 3 (2 ULg)