References of "Lecomte, Philippe"
     in
Bookmark and Share    
See detailOrganocatalytic ring-opening polymerization towards polyphosphoesters
Clément, Benoit; Vanslambrouck, Stépanie; Carion, Stéphan ULg et al

Conference (2016, September 13)

Hydrolytically degradable and biocompatible aliphatic polyesters are widely applied for biomedical applications as implants, scaffolds for tissue engineering and, finally, as nanocarriers for drug ... [more ▼]

Hydrolytically degradable and biocompatible aliphatic polyesters are widely applied for biomedical applications as implants, scaffolds for tissue engineering and, finally, as nanocarriers for drug delivery. Aliphatic phophoesters, known since the pioneering work of S. Penczek in the 70’s, exhibit the same properties of hydrolytic degradability and biocompatibility and are thus more and more studied for biomedical applications as well. In the field of materials, anti-fire properties opens up new perspectives. The difference between polyesters and polyphosphoesters in terms of synthesis and properties will be highlighted. Polyphosphosphoesters are synthesized by step-growth and chain growth polymerization. When these polyphosphoesters are synthesized by ring-opening polymerization of cyclic phosphoesters, organocatalysts turned out to be very efficient compared to coodination processes. The last part of the talk will deal with te implementation of ROP of cyclic phosphates towards a series of amphiphilic PEO-block-polyphosphate copolymers of tailored hydrophobicity depending on the length of the lateral alkyl group. These polymers are able to self assemble into nanoparticles by direct dissolution in water, thus in the absernce of any organic solvent. The so-obtained micelles were studied by a set of techniques (Pyrene Fluorescence, Dynamic Light Scattering, Tensiometry). Finally, the influence of the hydrophobicity of the polyphosphate block of the micelle on the encapsulation and the release of a model drug was investigated. [less ▲]

Detailed reference viewed: 44 (6 ULg)
See detailPolyphosphoester containing amphiphilic block copolymers as drug nanocarriers
Ergül, Zeynep ULg; Vanslambrouck, Stéphanie; Thiry, Justine ULg et al

Poster (2016, September 12)

The design of drug delivery systems often requires biodegradable and biocompatible materials that allow safe retention and controlled release of the drug. In this respect, supramolecularly self-assembled ... [more ▼]

The design of drug delivery systems often requires biodegradable and biocompatible materials that allow safe retention and controlled release of the drug. In this respect, supramolecularly self-assembled amphiphilic block copolymers into spherical micelles are appropriate carriers for poorly soluble drugs. In that framework, we have designed novel functional poly(ethylene oxide)-b-polyphosphoester amphiphilic block copolymers able to cross-linked under UV and degrade in response to a reduction of the pH from neutral conditions. Therefore, an unsaturated alkene side-chain was introduced on the cyclic phosphate monomer according to a one-step reaction followed by its organocatalyzed polymerization initiated by a poly(ethylene oxide) macroinitiator. After self-assembly into water, the micelles were cross-linked by UV irradiation. Then, these cross-linked micelles have been loaded by doxorubicin, i.e. a drug used in cancer therapy. We observed that the doxorubicin loading increased with the number of double bonds on the polyphosphate block of non-cross-linked micelles. This diblock amphiphilic copolymer bearing pendant unsaturations appears thus particularly promising candidate to build micellar drug delivery systems for intravenous injection. [less ▲]

Detailed reference viewed: 26 (2 ULg)
Full Text
Peer Reviewed
See detailAnionic flow polymerizations toward functional polyphosphoesters in microreactors: Polymerization and UV-modification
Baeten, Evelien; Vanslambrouck, Stéphanie; Jérôme, Christine ULg et al

in European Polymer Journal (2016), 80

The polymerization of cyclic phosphates to poly(phosphoester)s, PPEs, is optimized for chip- based microreactors under continuous flow conditions. The anionic ring-opening polymerization of 2-isobutyoxy-2 ... [more ▼]

The polymerization of cyclic phosphates to poly(phosphoester)s, PPEs, is optimized for chip- based microreactors under continuous flow conditions. The anionic ring-opening polymerization of 2-isobutyoxy-2-oxo-1,3,2-dioxaphospholane (iBP) via the use of two organocatalytic systems allowed to polymerize to nearly quantitative monomer conversion within 10 or 3 minutes, respectively at a reaction temperature of 40 °C. Further, the optimized polymerization protocol was applied to 2-butenoxy-2-oxo-1,3,2-dioxaphospholane (BP) which yields a polymer that carries an alkene functionality per monomer repeating unit. This material can be postmodified in an UV-induced radical thiol-ene reaction, which was also shown to proceed with very high efficiency under UV-flow conditions. Eventually, both reactions were coupled in a two-stage reactor setup, showing that the thermally-activated polymerization can be coupled with high efficiency to the UV-activated post-polymerization modification reaction. The introduced reactor setup can in the future be used to produce and screen a broad variety of functional PPE materials with various functionalities and physical properties. [less ▲]

Detailed reference viewed: 77 (29 ULg)
See detailPolyphosphoesters as a new platform for the design of particulate drug delivery systems
Vanslambrouck, Stéphanie; Ergul Yilmaz, Zeynep; Debuigne, Antoine ULg et al

Conference (2016, June)

Thanks to their biocompatibility and degradability properties, polyphosphates are appealing polymers for biomedical applications. In contrast to aliphatic polyesters, such as poly(ε-caprolactone) and poly ... [more ▼]

Thanks to their biocompatibility and degradability properties, polyphosphates are appealing polymers for biomedical applications. In contrast to aliphatic polyesters, such as poly(ε-caprolactone) and poly(lactide), the pentavalency of the phosphorus atom allows the easy modification of the polyphosphate properties by simply adjusting the nature, the length and the functionality of the polyphosphate pendant groups. Therefore, macromolecular engineering of polyphosphoesters was applied to design well-defined architectures and functionalities adapted to drug nanocarriers. In a first approach, amphiphilic block copolymers are synthesized by organo-catalyzed ring-opening polymerization process for the synthesis of a range of PEO-b-polyphosphate bearing various pendant groups. Post-polymerization thiol-ene click reactions preformed on PEO-b-polyphosphate copolymers was also investigated to improve the hydrophobicity of the polyphosphate. The self-assembly of these PEO-b-polyphosphate copolymers into micelles was investigated, particularly, the effect of the nature of the polyphosphate pendant groups (i) on the micelles characteristics, (ii) on the encapsulation of a poorly soluble drug and (iii) on the drug release profile. The toxicity of the different amphiphilic block copolymers was also evaluated by live/dead cell viability assays. In a second approach, double hydrophilic copolymers based on polyphosphoesters have been used as templating agent for the synthesis of calcium carbonate particles. Indeed, the use of such microparticles is becoming more and more attractive in many fields especially for biomedical applications for which fine tuning of size, morphology and crystalline form of CaCO3 particles is crucial. Although some structuring compounds, like hyaluronic acid, give satisfying results, the control of the particle structure still has to be improved. To this end, we evaluated the CaCO3 structuring capacity of the well-defined double hydrophilic block copolymers composed of poly(ethylene oxide) and of a polyphosphoester segment with affinity for calcium like poly(phosphotriester)s bearing pendant carboxylic acids or poly(phosphodiester)s with a negatively charged oxygen atom on each repeating monomer unit. [less ▲]

Detailed reference viewed: 144 (12 ULg)
See detailPolyphosphoester containing amphiphilic block copolymers as drug nanocarriers
Yilmaz-Ergül, Zeynep ULg; Vanslambrouck, Stéphanie; Thiry, Justine ULg et al

Poster (2016, May 23)

The design of drug delivery systems (DDS) often requires biodegradable and biocompatible materials that allow safe retention and controlled release of the drug. In this respect, poly(ethylene oxide)-b ... [more ▼]

The design of drug delivery systems (DDS) often requires biodegradable and biocompatible materials that allow safe retention and controlled release of the drug. In this respect, poly(ethylene oxide)-b-polyphosphoester amphiphilic block copolymers are known to self-assemble into polymer micelles when placed in water are appropriate drug carriers. In this work, an unsaturated alkene side-chain was introduced on the cyclic phosphate monomer according to a one-step reaction followed by its organocatalyzed polymerization initiated by a poly(ethylene oxide) macroinitiator. After self-assembly into water, the micelles were cross-linked by UV irradiation. Then, these cross-linked micelles have been loaded by doxorubicin, which is a drug to use in cancer therapy. We observed that the doxorubicin loading increased with the number of double bonds on the polyphosphate block of non-cross-linked micelles. This diblock amphiphilic copolymer bearing pendant unsaturations appears thus particularly promising candidate to build micellar drug delivery systems for intravenous injection. [less ▲]

Detailed reference viewed: 48 (8 ULg)
Full Text
See detailLes polymères au service de la pharmacologie
Lecomte, Philippe ULg

Scientific conference (2016, January 12)

Detailed reference viewed: 29 (3 ULg)
Full Text
Peer Reviewed
See detailRing opening polymerization of ε-caprolactone in the presence of wet β-cyclodextrin: effect of the operative pressure and of water molecules in the β-cyclodextrin cavity
Galia, Alessandro; Scialdone, Onofrio; Spanò, Tiziana et al

in RSC Advances (2016), 6

The ring opening polymerization (ROP) of ε-caprolactone (CL) in the presence of β-cyclodextrin (β−CD) was performed in batch reactors both at room pressure and with the reaction system pressurized with ... [more ▼]

The ring opening polymerization (ROP) of ε-caprolactone (CL) in the presence of β-cyclodextrin (β−CD) was performed in batch reactors both at room pressure and with the reaction system pressurized with CO2, N2 or Ar. Significant enhancements of the polymerization rate was observed when the ROP was carried out with wet β−CD under pressure. For example, after 24 hours at 120°C with β−CD/CL molar ratio of about 1/100, the monomer conversion increased from β 4 to 98-99% when the pressure was changed from 0.1 to 12.5-13.0 MPa independently on the nature of the compressing gas. MALDI-TOF analyses indicated that a major fraction of polymer chains obtained in pressurized systems was initiated by water molecules. Collected results suggest that at 12-13 MPa wet β−CD can catalyse both the ring opening of ε-caprolactone and the polymerization of the obtained linear specie and that high energy water molecules located inside the cavity of the cyclic oligosaccharide must play a role in initiating the polymerization. The trend of number average molecular weight and the results of MALDI-TOF analyses obtained in polymerizations performed for long reaction times and in hydrolysis test of commercial poly(ε-caprolactone) indicate that wet β−CD can work as an artificial lipase enzyme under adopted conditions. [less ▲]

Detailed reference viewed: 23 (6 ULg)
Full Text
Peer Reviewed
See detailCore cross-linked micelles of polyphosphoester containing amphiphilic block copolymers as drug nanocarriers
Ergül, Zeynep ULg; Vanslambrouck, Stéphanie; Cajot, Sébastien et al

in RSC Advances (2016), 6(48), 42081-42088

Poly(ethylene oxide)-b-polyphosphoester amphiphilic block copolymers are known to self-assemble into polymer micelles when dissolved into water. This work aims at reporting on the improvement of the ... [more ▼]

Poly(ethylene oxide)-b-polyphosphoester amphiphilic block copolymers are known to self-assemble into polymer micelles when dissolved into water. This work aims at reporting on the improvement of the stability of the micelles at high dilution by crosslinking the hydrophobic polyphosphoester micellar core. Typically, an unsaturated alkene side-chain was introduced on the cyclic phosphate monomer according to a one-step reaction followed by its organocatalyzed polymerization initiated by a poly(ethylene oxide) macroinitiator. This strategy avoids the use of any organometallic compounds in order to facilitate the purification and meet the stringent requirements of biomedical applications. After self-assembly into water, the micelles were cross-linked by simple UV irradiation. These cross-linked micelles have then been loaded by doxorubicin to evaluate their potential as drug nanocarriers and monitor the impact of crosslinking on the release profile. [less ▲]

Detailed reference viewed: 37 (15 ULg)
See detailSynthesis of functional polyphosphates for hydrogel and particle drug delivery systems
Vanslambrouck, Stéphanie; Ergül, Zeynep ULg; Clément, Benoit et al

Conference (2015, December 02)

Thanks to their biocompatibility and degradability properties, polyphosphates are appealing polymers for biomedical applications. In contrast to aliphatic polyesters, such as poly(ε-caprolactone) and poly ... [more ▼]

Thanks to their biocompatibility and degradability properties, polyphosphates are appealing polymers for biomedical applications. In contrast to aliphatic polyesters, such as poly(ε-caprolactone) and poly(lactide), the pentavalency of the phosphorus atom allows the easy modification of the polyphosphate properties by simply adjusting the nature, the length and the functionality of the polyphosphate pendant groups. Macromolecular engineering of polyphosphoesters was applied to design well-defined architectures and functionalities adapted to drug nanocarriers. In a first approach, amphiphilic block copolymers are synthesized by organo-catalyzed ring-opening polymerization process for the synthesis of a range of PEO-b-polyphosphate bearing various pendant groups. Post-polymerization thiol-ene click reactions preformed on PEO-b-polyphosphate copolymers was also investigated to improve the hydrophobicity of the polyphosphate. The self-assembly of these PEO-b-polyphosphate copolymers into micelles was investigated, particularly, the effect of the nature of the polyphosphate pendant groups (i) on the micelles characteristics, (ii) on the encapsulation of a poorly soluble drug and (iii) on the drug release profile. The toxicity of the different amphiphilic block copolymers was also evaluated by live/dead cell viability assays. In a second approach, double hydrophilic copolymers based on polyphosphoesters have been used as templating agent for the synthesis of calcium carbonate particles. Indeed, the use of such microparticles is becoming more and more attractive in many fields especially for biomedical applications for which fine tuning of size, morphology and crystalline form of CaCO3 particles is crucial. Although some structuring compounds, like hyaluronic acid, give satisfying results, the control of the particle structure still has to be improved. To this end, we evaluated the CaCO3 structuring capacity of the well-defined double hydrophilic block copolymers composed of poly(ethylene oxide) and of a polyphosphoester segment with affinity for calcium like poly(phosphotriester)s bearing pendant carboxylic acids or poly(phosphodiester)s with a negatively charged oxygen atom on each repeating monomer unit. [less ▲]

Detailed reference viewed: 87 (8 ULg)
Full Text
Peer Reviewed
See detailSynthesis of polyphosphodiesters by ring-opening polymerization of cyclic phosphates bearing allyl phosphoester protecting groups
Clément, Benoit; Molin, Daniel G.; Jérôme, Christine ULg et al

in Journal of Polymer Science. Part A, Polymer Chemistry (2015), 53(22), 2642-2648

The allyl phosphoester group is shown to be a protecting group for the synthesis of anionic polyphosphodiesters. Our strategy relies on the synthesis of a cyclic phosphate monomer bearing a pendant allyl ... [more ▼]

The allyl phosphoester group is shown to be a protecting group for the synthesis of anionic polyphosphodiesters. Our strategy relies on the synthesis of a cyclic phosphate monomer bearing a pendant allyl phosphoester group, its easy purification by fractional distillation, its organocatalyzed ring-opening polymerization by 1,8-diazobicyclo[5.4.0]undec-7-ene (DBU) and 1-[3,5-bis(trifluoromethyl)phenyl]-3-cyclohexyl-thiourea (TU). Finally, the deprotection of the allyl phosphoester group is carried out by reaction with sodium benzenethiolate in the absence of any detectable degradation. [less ▲]

Detailed reference viewed: 87 (24 ULg)
Full Text
Peer Reviewed
See detailSynthesis of aliphatic polyamide bearing fluorinated groups from ε-caprolactam and modified cyclic lysine
Tunc, Deniz; Bouchekiv, Hassen; Améduri, Bruno et al

in European Polymer Journal (2015), 71

Aliphatic polyamide (PA) bearing fluorinated groups was synthesized in bulk with perfluorobutyryl-substituted α-amino-ε-caprolactam and ε-caprolactam by anionic ring-opening polymerization (AROP). The ... [more ▼]

Aliphatic polyamide (PA) bearing fluorinated groups was synthesized in bulk with perfluorobutyryl-substituted α-amino-ε-caprolactam and ε-caprolactam by anionic ring-opening polymerization (AROP). The fluorinated monomer was obtained by condensation between cyclic lysine (i.e. α-amino-ε-caprolactam) and perfluorobutyrylchloride. The effect of the fluorinated monomer fraction onto the AROP of ε-caprolactam was monitored by the exothermicity of this polymerization versus time. The properties and characteristics of the resulting polymers were studied by with differential scanning calorimetry, thermogravimetry, magic angle spining NMR, FT-IR, and contact angle measurements. Polyamides bearing fluorinated groups exhibited better thermal stability than polyamide 6 (PA6) as well as a higher hydrophobic surface character as evidenced by surface tension measurements. The glass transition temperature of polyamide 6 was 53 °C and rose to 58 °C for a PA bearing fluorinated moieties, while fluorinated monomer insertion induced a decrease of the melting points from 216 to 198 °C. These copolymers displayed a maximum degradation temperature of 390 °C as compared to the 310 °C for PA6, and their surface energies decreased from 49.4 mN.cm-1 (PA6 value) to 44.1 mN.cm-1. [less ▲]

Detailed reference viewed: 52 (11 ULg)
See detailGreen synthesis of polyphosphoesters, a promising class of bioinspired degradable materials
Lecomte, Philippe ULg; Baeten, Evelien

Conference (2015, September 11)

Detailed reference viewed: 26 (4 ULg)
See detailIntercalation of imidazolium end-functionalized polyphosphates between montmorillonite nanosheets towards flame-retardant
Carion, Stéphan ULg; Lecomte, Philippe ULg; Thomassin, Jean-Michel ULg et al

Poster (2015, September 11)

Among the additives used to impart flame-retardant properties to polymer materials, phosphorous additives and nanoclays are widely used. The aim of this work is to associate both additives to bring about ... [more ▼]

Among the additives used to impart flame-retardant properties to polymer materials, phosphorous additives and nanoclays are widely used. The aim of this work is to associate both additives to bring about a synergetic effect for improving the flame-retardancy of the material (1). In a first step, the synthesis of an aliphatic polyphosphate end-capped by an imidazolium cation is reported. Secondly, this polymer is intercalated between montmorillonite nanoclays. The strategy used for the synthesis of the polyphosphate is based on the ring-opening polymerization of the corresponding cyclic phosphate by using 1-(11-hydroxy-undecyl)-3-methylimidazolium bromide as an initiator. This polymerization was catalyzed by DBU and a thiourea derivative (2). This polymer was characterized by a set of techniques (31P and 1H NMR, SEC, TGA, DSC). Finally, the cationic end-functionalized polymer was exchanged with sodium cations present in montmorillonite. The intercalation of the polyphosphate between the clay nanosheets was proved by X-Ray Diffraction (XRD) and thermogravimetric analysis (TGA). This last technique was also used to determine the influence of the intercalation on the thermal stability of the polyphosphate. [less ▲]

Detailed reference viewed: 36 (7 ULg)