References of "Lecomte, Pierre"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailHistologically Proven Bronchial Neuroendocrine Tumors in MEN1: A GTE 51-Case Cohort Study.
Lecomte, Pierre ULiege; Binquet, C.; Le Bras, M. et al

in World Journal of Surgery (2017)

OBJECTIVE: To evaluate the natural history of MEN1-related bronchial endocrine tumors (br-NETs) and to determine their histological characteristics, survival and causes of death. br-NETs frequency ranges ... [more ▼]

OBJECTIVE: To evaluate the natural history of MEN1-related bronchial endocrine tumors (br-NETs) and to determine their histological characteristics, survival and causes of death. br-NETs frequency ranges from 3 to 13% and may reach 32% depending on the number of patients evaluated and on the criteria required for diagnosis. METHODS: The 1023-patient series of symptomatic MEN1 patients followed up in a median of 48.7 [35.5-59.6] years by the Groupe d'etude des Tumeurs Endocrines was analyzed using time-to-event techniques. RESULTS: br-NETs were found in 51 patients (4.8%, [95% CI 3.6-6.2%]) and were discovered by imaging in 86% of cases (CT scan, Octreoscan, Chest X-ray, MRI). Median age at diagnosis was 45 years [28-66]. Histological examination showed 27 (53%) typical carcinoids (TC), 16 (31%) atypical carcinoids (AC), 2 (4%) large cell neuroendocrine carcinomas (LCNEC), 3(6%) small cell neuroendocrine carcinomas (SCLC), 3(6%) TC associated with AC. Overall survival was not different from the rest of the cohort (HR 0.29, [95% CI 0.02-5.14]). AC tended to have a worse prognosis than TC (p = 0.08). Seven deaths were directly related to br-NETs (three AC, three SCLC and one LCNEC). Patients who underwent surgery survived longer (p = 10-4) and were metastasis free, while 8 of 14 non-operated patients were metastatic. There were no operative deaths. CONCLUSIONS: Around 5% of MEN1 patients develop br-NETs. br-NETs do not decrease overall survival in MEN1 patients, but poorly differentiated and aggressive br-NETs can cause death. br-NETs must be screened carefully. A biopsy is essential to operate on patients in time. [less ▲]

Detailed reference viewed: 19 (0 ULiège)
Full Text
Peer Reviewed
See detailOn a Lie Algebraic Characterization of Vector Bundles
Lecomte, Pierre ULiege; Leuther, Thomas ULiege; Zihindula Mushengezi, Elie ULiege

in Symmetry, Integrability and Geometry: Methods and Applications [=SIGMA] (2012)

We prove that a vector bundle E -> M is characterized by the Lie algebra generated by all differential operators on E which are eigenvectors of the Lie derivative in the direction of the Euler vector ... [more ▼]

We prove that a vector bundle E -> M is characterized by the Lie algebra generated by all differential operators on E which are eigenvectors of the Lie derivative in the direction of the Euler vector field. Our result is of Pursell-Shanks type but it is remarkable in the sense that it is the whole f ibration that is characterized here. The proof relies on a theorem of [Lecomte P., J. Math. Pures Appl. (9) 60 (1981), 229{239] and inherits the same hypotheses. In particular, our characterization holds only for vector bundles of rank greater than 1. [less ▲]

Detailed reference viewed: 63 (9 ULiège)
Full Text
See detailAbstract numeration systems (Chapter 3)
Lecomte, Pierre ULiege; Rigo, Michel ULiege

in Berthé, Valérie; Rigo, Michel (Eds.) Combinatorics, Automata and Number Theory (2010)

Detailed reference viewed: 92 (8 ULiège)
Full Text
Peer Reviewed
See detailCombinatorics, Automata and Number Theory 2006
Berthé, Valérie; Lecomte, Pierre ULiege; Rigo, Michel ULiege

in Theoretical Computer Science (2008), 391

Detailed reference viewed: 29 (6 ULiège)
Full Text
Peer Reviewed
See detailReal numbers having ultimately periodic representations in abstract numeration systems
Lecomte, Pierre ULiege; Rigo, Michel ULiege

in Information and Computation (2004), 192(1), 57-83

Using a genealogically ordered infinite regular language, we know how to represent an interval of R. Numbers having an ultimately periodic representation play a special role in classical numeration ... [more ▼]

Using a genealogically ordered infinite regular language, we know how to represent an interval of R. Numbers having an ultimately periodic representation play a special role in classical numeration systems. The aim of this paper is to characterize the numbers having an ultimately periodic representation in generalized systems built on a regular language. The syntactical properties of these words are also investigated. Finally, we show the equivalence of the classical theta-expansions with our generalized representations in some special case related to a Pisot number theta. (C) 2004 Elsevier Inc. All rights reserved. [less ▲]

Detailed reference viewed: 16 (2 ULiège)
Full Text
Peer Reviewed
See detailOn the representation of real numbers using regular languages
Lecomte, Pierre ULiege; Rigo, Michel ULiege

in Theory of Computing Systems (2002), 35(1, JAN-FEB), 13-38

Using a lexicographically ordered regular language, we show how to represent an interval of R. We determine exactly the possible representations of any element in this interval and study the function ... [more ▼]

Using a lexicographically ordered regular language, we show how to represent an interval of R. We determine exactly the possible representations of any element in this interval and study the function which maps a representation onto its numerical value. We make explicit the relationship between the convergence of finite words to an infinite word and the convergence of the corresponding approximations to a real number. [less ▲]

Detailed reference viewed: 51 (10 ULiège)
Full Text
Peer Reviewed
See detailNumerations systems on a regular language
Lecomte, Pierre ULiege; Rigo, Michel ULiege

in Theory of Computing Systems (2001), 34

Generalizations of positional number systems in which N is recognizable by finite automata are obtained by describing an arbitrary infinite regular language according to the lexicographic ordering. For ... [more ▼]

Generalizations of positional number systems in which N is recognizable by finite automata are obtained by describing an arbitrary infinite regular language according to the lexicographic ordering. For these systems of numeration, we show that ultimately periodic sets are recognizable. We also study translation and multiplication by constants as well as the order-dependence of the recognizability. [less ▲]

Detailed reference viewed: 38 (2 ULiège)
Full Text
Peer Reviewed
See detailComparison of some modules of the Lie algebra of vector fields
Lecomte, Pierre ULiege; Mathonet, Pierre ULiege; Tousset, E.

in Indagationes Mathematicae (1996), 7(4), 461-471

Detailed reference viewed: 20 (3 ULiège)