References of "Lecomte, Philippe"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailAnionic flow polymerizations toward functional polyphosphoesters in microreactors: Polymerization and UV-modification
Baeten, Evelien; Vanslambrouck, Stéphanie; Jérôme, Christine ULg et al

in European Polymer Journal (in press)

The polymerization of cyclic phosphates to poly(phosphoester)s, PPEs, is optimized for chip- based microreactors under continuous flow conditions. The anionic ring-opening polymerization of 2-isobutyoxy-2 ... [more ▼]

The polymerization of cyclic phosphates to poly(phosphoester)s, PPEs, is optimized for chip- based microreactors under continuous flow conditions. The anionic ring-opening polymerization of 2-isobutyoxy-2-oxo-1,3,2-dioxaphospholane (iBP) via the use of two organocatalytic systems allowed to polymerize to nearly quantitative monomer conversion within 10 or 3 minutes, respectively at a reaction temperature of 40 °C. Further, the optimized polymerization protocol was applied to 2-butenoxy-2-oxo-1,3,2-dioxaphospholane (BP) which yields a polymer that carries an alkene functionality per monomer repeating unit. This material can be postmodified in an UV-induced radical thiol-ene reaction, which was also shown to proceed with very high efficiency under UV-flow conditions. Eventually, both reactions were coupled in a two-stage reactor setup, showing that the thermally-activated polymerization can be coupled with high efficiency to the UV-activated post-polymerization modification reaction. The introduced reactor setup can in the future be used to produce and screen a broad variety of functional PPE materials with various functionalities and physical properties. [less ▲]

Detailed reference viewed: 53 (19 ULg)
See detailPolyphosphoesters as a new platform for the design of particulate drug delivery systems
Vanslambrouck, Stéphanie; Ergul Yilmaz, Zeynep; Debuigne, Antoine ULg et al

Conference (2016, June)

Thanks to their biocompatibility and degradability properties, polyphosphates are appealing polymers for biomedical applications. In contrast to aliphatic polyesters, such as poly(ε-caprolactone) and poly ... [more ▼]

Thanks to their biocompatibility and degradability properties, polyphosphates are appealing polymers for biomedical applications. In contrast to aliphatic polyesters, such as poly(ε-caprolactone) and poly(lactide), the pentavalency of the phosphorus atom allows the easy modification of the polyphosphate properties by simply adjusting the nature, the length and the functionality of the polyphosphate pendant groups. Therefore, macromolecular engineering of polyphosphoesters was applied to design well-defined architectures and functionalities adapted to drug nanocarriers. In a first approach, amphiphilic block copolymers are synthesized by organo-catalyzed ring-opening polymerization process for the synthesis of a range of PEO-b-polyphosphate bearing various pendant groups. Post-polymerization thiol-ene click reactions preformed on PEO-b-polyphosphate copolymers was also investigated to improve the hydrophobicity of the polyphosphate. The self-assembly of these PEO-b-polyphosphate copolymers into micelles was investigated, particularly, the effect of the nature of the polyphosphate pendant groups (i) on the micelles characteristics, (ii) on the encapsulation of a poorly soluble drug and (iii) on the drug release profile. The toxicity of the different amphiphilic block copolymers was also evaluated by live/dead cell viability assays. In a second approach, double hydrophilic copolymers based on polyphosphoesters have been used as templating agent for the synthesis of calcium carbonate particles. Indeed, the use of such microparticles is becoming more and more attractive in many fields especially for biomedical applications for which fine tuning of size, morphology and crystalline form of CaCO3 particles is crucial. Although some structuring compounds, like hyaluronic acid, give satisfying results, the control of the particle structure still has to be improved. To this end, we evaluated the CaCO3 structuring capacity of the well-defined double hydrophilic block copolymers composed of poly(ethylene oxide) and of a polyphosphoester segment with affinity for calcium like poly(phosphotriester)s bearing pendant carboxylic acids or poly(phosphodiester)s with a negatively charged oxygen atom on each repeating monomer unit. [less ▲]

Detailed reference viewed: 65 (10 ULg)
Full Text
See detailLes polymères au service de la pharmacologie
Lecomte, Philippe ULg

Scientific conference (2016, January 12)

Detailed reference viewed: 26 (3 ULg)
Full Text
Peer Reviewed
See detailCore cross-linked micelles of polyphosphoester containing amphiphilic block copolymers as drug nanocarriers
Ergül, Zeynep ULg; Vanslambrouck, Stéphanie; Cajot, Sébastien et al

in RSC Advances (2016), 6(48), 42081-42088

Poly(ethylene oxide)-b-polyphosphoester amphiphilic block copolymers are known to self-assemble into polymer micelles when dissolved into water. This work aims at reporting on the improvement of the ... [more ▼]

Poly(ethylene oxide)-b-polyphosphoester amphiphilic block copolymers are known to self-assemble into polymer micelles when dissolved into water. This work aims at reporting on the improvement of the stability of the micelles at high dilution by crosslinking the hydrophobic polyphosphoester micellar core. Typically, an unsaturated alkene side-chain was introduced on the cyclic phosphate monomer according to a one-step reaction followed by its organocatalyzed polymerization initiated by a poly(ethylene oxide) macroinitiator. This strategy avoids the use of any organometallic compounds in order to facilitate the purification and meet the stringent requirements of biomedical applications. After self-assembly into water, the micelles were cross-linked by simple UV irradiation. These cross-linked micelles have then been loaded by doxorubicin to evaluate their potential as drug nanocarriers and monitor the impact of crosslinking on the release profile. [less ▲]

Detailed reference viewed: 28 (9 ULg)
See detailSynthesis of functional polyphosphates for hydrogel and particle drug delivery systems
Vanslambrouck, Stéphanie; Ergül, Zeynep ULg; Clément, Benoit et al

Conference (2015, December 02)

Thanks to their biocompatibility and degradability properties, polyphosphates are appealing polymers for biomedical applications. In contrast to aliphatic polyesters, such as poly(ε-caprolactone) and poly ... [more ▼]

Thanks to their biocompatibility and degradability properties, polyphosphates are appealing polymers for biomedical applications. In contrast to aliphatic polyesters, such as poly(ε-caprolactone) and poly(lactide), the pentavalency of the phosphorus atom allows the easy modification of the polyphosphate properties by simply adjusting the nature, the length and the functionality of the polyphosphate pendant groups. Macromolecular engineering of polyphosphoesters was applied to design well-defined architectures and functionalities adapted to drug nanocarriers. In a first approach, amphiphilic block copolymers are synthesized by organo-catalyzed ring-opening polymerization process for the synthesis of a range of PEO-b-polyphosphate bearing various pendant groups. Post-polymerization thiol-ene click reactions preformed on PEO-b-polyphosphate copolymers was also investigated to improve the hydrophobicity of the polyphosphate. The self-assembly of these PEO-b-polyphosphate copolymers into micelles was investigated, particularly, the effect of the nature of the polyphosphate pendant groups (i) on the micelles characteristics, (ii) on the encapsulation of a poorly soluble drug and (iii) on the drug release profile. The toxicity of the different amphiphilic block copolymers was also evaluated by live/dead cell viability assays. In a second approach, double hydrophilic copolymers based on polyphosphoesters have been used as templating agent for the synthesis of calcium carbonate particles. Indeed, the use of such microparticles is becoming more and more attractive in many fields especially for biomedical applications for which fine tuning of size, morphology and crystalline form of CaCO3 particles is crucial. Although some structuring compounds, like hyaluronic acid, give satisfying results, the control of the particle structure still has to be improved. To this end, we evaluated the CaCO3 structuring capacity of the well-defined double hydrophilic block copolymers composed of poly(ethylene oxide) and of a polyphosphoester segment with affinity for calcium like poly(phosphotriester)s bearing pendant carboxylic acids or poly(phosphodiester)s with a negatively charged oxygen atom on each repeating monomer unit. [less ▲]

Detailed reference viewed: 52 (7 ULg)
Full Text
Peer Reviewed
See detailSynthesis of polyphosphodiesters by ring-opening polymerization of cyclic phosphates bearing allyl phosphoester protecting groups
Clément, Benoit; Molin, Daniel G.; Jérôme, Christine ULg et al

in Journal of Polymer Science. Part A, Polymer Chemistry (2015), 53(22), 2642-2648

The allyl phosphoester group is shown to be a protecting group for the synthesis of anionic polyphosphodiesters. Our strategy relies on the synthesis of a cyclic phosphate monomer bearing a pendant allyl ... [more ▼]

The allyl phosphoester group is shown to be a protecting group for the synthesis of anionic polyphosphodiesters. Our strategy relies on the synthesis of a cyclic phosphate monomer bearing a pendant allyl phosphoester group, its easy purification by fractional distillation, its organocatalyzed ring-opening polymerization by 1,8-diazobicyclo[5.4.0]undec-7-ene (DBU) and 1-[3,5-bis(trifluoromethyl)phenyl]-3-cyclohexyl-thiourea (TU). Finally, the deprotection of the allyl phosphoester group is carried out by reaction with sodium benzenethiolate in the absence of any detectable degradation. [less ▲]

Detailed reference viewed: 73 (22 ULg)
Full Text
Peer Reviewed
See detailSynthesis of aliphatic polyamide bearing fluorinated groups from ε-caprolactam and modified cyclic lysine
Tunc, Deniz; Bouchekiv, Hassen; Améduri, Bruno et al

in European Polymer Journal (2015), 71

Aliphatic polyamide (PA) bearing fluorinated groups was synthesized in bulk with perfluorobutyryl-substituted α-amino-ε-caprolactam and ε-caprolactam by anionic ring-opening polymerization (AROP). The ... [more ▼]

Aliphatic polyamide (PA) bearing fluorinated groups was synthesized in bulk with perfluorobutyryl-substituted α-amino-ε-caprolactam and ε-caprolactam by anionic ring-opening polymerization (AROP). The fluorinated monomer was obtained by condensation between cyclic lysine (i.e. α-amino-ε-caprolactam) and perfluorobutyrylchloride. The effect of the fluorinated monomer fraction onto the AROP of ε-caprolactam was monitored by the exothermicity of this polymerization versus time. The properties and characteristics of the resulting polymers were studied by with differential scanning calorimetry, thermogravimetry, magic angle spining NMR, FT-IR, and contact angle measurements. Polyamides bearing fluorinated groups exhibited better thermal stability than polyamide 6 (PA6) as well as a higher hydrophobic surface character as evidenced by surface tension measurements. The glass transition temperature of polyamide 6 was 53 °C and rose to 58 °C for a PA bearing fluorinated moieties, while fluorinated monomer insertion induced a decrease of the melting points from 216 to 198 °C. These copolymers displayed a maximum degradation temperature of 390 °C as compared to the 310 °C for PA6, and their surface energies decreased from 49.4 mN.cm-1 (PA6 value) to 44.1 mN.cm-1. [less ▲]

Detailed reference viewed: 36 (9 ULg)
See detailGreen synthesis of polyphosphoesters, a promising class of bioinspired degradable materials
Lecomte, Philippe ULg; Baeten, Evelien

Conference (2015, September 11)

Detailed reference viewed: 23 (4 ULg)
See detailIntercalation of imidazolium end-functionalized polyphosphates between montmorillonite nanosheets towards flame-retardant
Carion, Stéphan ULg; Lecomte, Philippe ULg; Thomassin, Jean-Michel ULg et al

Poster (2015, September 11)

Among the additives used to impart flame-retardant properties to polymer materials, phosphorous additives and nanoclays are widely used. The aim of this work is to associate both additives to bring about ... [more ▼]

Among the additives used to impart flame-retardant properties to polymer materials, phosphorous additives and nanoclays are widely used. The aim of this work is to associate both additives to bring about a synergetic effect for improving the flame-retardancy of the material (1). In a first step, the synthesis of an aliphatic polyphosphate end-capped by an imidazolium cation is reported. Secondly, this polymer is intercalated between montmorillonite nanoclays. The strategy used for the synthesis of the polyphosphate is based on the ring-opening polymerization of the corresponding cyclic phosphate by using 1-(11-hydroxy-undecyl)-3-methylimidazolium bromide as an initiator. This polymerization was catalyzed by DBU and a thiourea derivative (2). This polymer was characterized by a set of techniques (31P and 1H NMR, SEC, TGA, DSC). Finally, the cationic end-functionalized polymer was exchanged with sodium cations present in montmorillonite. The intercalation of the polyphosphate between the clay nanosheets was proved by X-Ray Diffraction (XRD) and thermogravimetric analysis (TGA). This last technique was also used to determine the influence of the intercalation on the thermal stability of the polyphosphate. [less ▲]

Detailed reference viewed: 30 (6 ULg)
See detailAliphatic polyphosphates, a promising class of polymers for drug delivery
Vanslambrouck, Stéphanie ULg; Clément, Benoit; Molin, Daniel G. et al

Conference (2015, June 02)

Detailed reference viewed: 20 (7 ULg)
See detailAliphatic polyphosphates: a promising family of polymers for drug delivery
Vanslambrouck, Stéphanie ULg; Clément, Benoit; Riva, Raphaël ULg et al

Poster (2015, May 18)

Thanks to their biocompatibility and biodegradability, polyphosphates are appealing polymers for biomedical applications. In contrast to polyesters, polyphosphate properties and functionality are easily ... [more ▼]

Thanks to their biocompatibility and biodegradability, polyphosphates are appealing polymers for biomedical applications. In contrast to polyesters, polyphosphate properties and functionality are easily tuned via the chemical nature of the lateral chains. In this work, a series of amphiphilic PEO-block-polyphosphate copolymers were synthesized by organo-catalyzed ring-opening polymerization of cyclic phosphates. These polymers are directly dissolved in water in the absence of any organic solvent and they self-assemble to form nanoparticles Our work aims at changing the lateral chain of polyphosphates to investigate the influence of this structural modification on (i) the size of the nanoparticles, (ii) the critical aggregation concentration, (iii) the encapsulation of an hydrophobic drug in the core of the nanoparticles and, finally, (iv) the release of the drug. [less ▲]

Detailed reference viewed: 51 (13 ULg)
See detailIntercalation of cationic aliphatic polyphosphates between montmorillonite nanosheets towards flame-retardant polymer materials
Carion, Stéphan ULg; Lecomte, Philippe ULg; Thomassin, Jean-Michel ULg et al

Poster (2015, May 18)

Among the strategies used to impart flame-retardant properties to polymer materials, the most effective ones include the addition of phosphorous compounds such as organic polyphosphates and the dispersion ... [more ▼]

Among the strategies used to impart flame-retardant properties to polymer materials, the most effective ones include the addition of phosphorous compounds such as organic polyphosphates and the dispersion of layered silicates (nanoclays). The aim of this work is to combine both approaches by the dispersion of nanoclays, organomodified by cationic aliphatic polyphosphates, into a polymer matrix. In this work, the synthesis of an aliphatic polyphosphate end-capped by an imidazolium cation followed by its intercalation between montmorillonite nanoclays sheets is reported. In a first step, the polyphosphate was synthesized by ring-opening polymerization of the corresponding cyclic phosphate using 1-(11-hydroxy-undecyl)-3-methylimidazolium bromide as initiator. This polymerization was catalyzed by DBU and a thiourea derivative. This polymer was characterized by different techniques (31P and 1H NMR, SEC, TGA, DSC). Finally, the cationic end-functionalized polymer was exchanged with sodium cations present in montmorillonite. The intercalation of the polyphosphate between the clay nanosheets was proved by X-Ray Diffraction (XRD) and thermogravimetric analysis (TGA). This last technique was also used to determine the influence of the intercalation on the thermal stability of the polyphosphate.polyphosphates, into a polymer matrix. In this work, the synthesis of an aliphatic polyphosphate end-capped by an imidazolium cation followed by its intercalation between montmorillonite nanoclays sheets is reported. In a first step, the polyphosphate was synthesized by ring-opening polymerization of the corresponding cyclic phosphate using 1-(11-hydroxy-undecyl)-3-methylimidazolium bromide as initiator. This polymerization was catalyzed by DBU and a thiourea derivative. This polymer was characterized by different techniques (31P and 1H NMR, SEC, TGA, DSC). Finally, the cationic end-functionalized polymer was exchanged with sodium cations present in montmorillonite. The intercalation of the polyphosphate between the clay nanosheets was proved by X-Ray Diffraction (XRD) and thermogravimetric analysis (TGA). This last technique was also used to determine the influence of the intercalation on the thermal stability of the polyphosphate. [less ▲]

Detailed reference viewed: 83 (5 ULg)
Full Text
Peer Reviewed
See detailPoly(ethylene glycol) grafted polylactide based copolymers for the preparation of PLA-based nanocarriers and hybrid hydrogel
Riva, Raphaël ULg; Schmeits, Stéphanie; Croisier, Florence ULg et al

in Clinical Hemorheology and Microcirculation (2015), 60

In previous works, poly(D,L-lactide-co-?CL-poly(ethylene glycol) (poly(D,L-La-co-?PEG?CL) amphiphilic graft- 10 copolymers were successfully synthesized according to a copper azide-alkyne cycloaddition ... [more ▼]

In previous works, poly(D,L-lactide-co-?CL-poly(ethylene glycol) (poly(D,L-La-co-?PEG?CL) amphiphilic graft- 10 copolymers were successfully synthesized according to a copper azide-alkyne cycloaddition (CuAAC) strategy. This paper aims 11 at reporting on the behavior of this amphiphilic copolymer in water, which was not studied in the previous paper. Moreover, 12 the ability of the copolymer to stabilize a PLA nanoparticles aqueous suspension is presented. For this purpose, dynamic 13 light scattering (DLS) and transmission electron microscopy (TEM) are proposed to characterize the nanoparticles in solution. 14 Otherwise, the strategy developed for the synthesis of the amphiphilic copolymers was adapted and extended to the synthesis of 15 PLA-based degradable hydrogel, potentially applicable as drug-loaded degradable polymer implant. [less ▲]

Detailed reference viewed: 49 (8 ULg)
Full Text
Peer Reviewed
See detailSynthesis and tensioactive properties of PEO-b-polyphosphate copolymers
Vanslambrouck, Stéphanie ULg; Clément, Benoit; Riva, Raphaël ULg et al

in RSC Advances (2015), 5(35), 27330-37337

Poly(ethylene oxide) (PEO)-b-polyphosphate copolymers made of hydrophilic PEO and hydrophobic polyphosphates are amphiphilic copolymers prone to self-assemble in water into nanoparticles. In this work ... [more ▼]

Poly(ethylene oxide) (PEO)-b-polyphosphate copolymers made of hydrophilic PEO and hydrophobic polyphosphates are amphiphilic copolymers prone to self-assemble in water into nanoparticles. In this work, nanoparticles are obtained by the self-assembly of PEO-b-polyphosphate copolymers in water in the absence of any organic co-solvent whatever the length of the pendant alkyl chain (between 4 and 7 carbon atoms) of the polyphosphate block. Remarkably, this solvent-free process remains efficient even for the most hydrophobic polyphosphate blocks. The critical aggregation concentration (CAC) of the block copolymers was determined by pyrene probe fluorescence. Finally, the efficiency of these copolymer surfactants to decrease the air–water interface was measured by air-bubble tensiometry. [less ▲]

Detailed reference viewed: 58 (16 ULg)
Full Text
Peer Reviewed
See detailReversible cross-linking of aliphatic polyamides bearing thermo- and photoresponsive cinnamoyl moieties
Tunc, Deniz ULg; Le Coz, Cédric; Alexandre, Michaël et al

in Macromolecules (2014), 47(23), 8247-8254

Detailed reference viewed: 48 (6 ULg)