References of "Laureys, Steven"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailA method for independent component graph analysis of resting-state fMRI. Brain and Behavior 2017, in press
Ribeiro de Paula, Demetrius; Ziegler, Erik; Abeyasinghe, P et al

in Brain and Behavior (in press)

Detailed reference viewed: 34 (1 ULg)
Peer Reviewed
See detailSelf in Dementia
Antoine, Nicolas ULg; Genon, Sarah ULg; Bastin, Christine ULg et al

in Mishara; Corlett, P.; Fletcher, P. (Eds.) et al Phenomenological Neuropsychiatry, How Patient Experience Bridges Clinic with Clinical Neuroscience (in press)

Detailed reference viewed: 84 (14 ULg)
Full Text
See detailCharacterization of minimally conscious state minus and plus according to resting functional connectivity
Aubinet, Charlène ULg; Heine, Lizette; Martial, Charlotte ULg et al

Scientific conference (2017, February 01)

The minimally conscious state (MCS) has been sub-categorized in MCS plus and MCS minus, i.e. respectively with and without command following capacity. Here we aimed at characterizing differences in MCS ... [more ▼]

The minimally conscious state (MCS) has been sub-categorized in MCS plus and MCS minus, i.e. respectively with and without command following capacity. Here we aimed at characterizing differences in MCS plus as compared to MCS minus by means of functional connectivity (FC). Resting state functional magnetic resonance imagery (fMRI) was acquired in 292 MCS patients and a seed-based analysis was conducted on a convenience sample of 19 MCS patients (10 MCS plus and 9 MCS minus) and 35 healthy controls. We investigated the left and right frontoparietal networks (FPN), the auditory network and the default mode network (DMN). We employed a ROI-to-ROI analysis and a voxel-based morphometry in order to investigate the inter-hemispheric connectivity and the grey and white matter volume, respectively. A significantly higher FC was found in MCS plus as compared to MCS minus in the left FPN, specifically between the left dorso-lateral prefrontal cortex and the left temporo-occipital fusiform cortex (TOFC). The FC of auditory network, right FPN and DMN, inter-hemispheric connectivity and structure of grey and white matter did not show differences between patients groups. The clinical sub-categorization of MCS is therefore sustained by FC differences in a language-related executive control network. These patient groups are not differentiated by networks involved in auditory processing, perception of surroundings and internal thoughts, nor by differences in inter-hemispheric connectivity and in morphology. [less ▲]

Detailed reference viewed: 17 (0 ULg)
Full Text
Peer Reviewed
See detailFalse memory susceptibility in coma survivors with and without a near-death experience
Martial, Charlotte ULg; Charland-Verville, Vanessa ULg; Dehon, Hedwige ULg et al

in Psychological Research (2017)

It has been postulated that memories of neardeath experiences (NDEs) could be (at least in part) reconstructions based on experiencers’ (NDErs) previous knowledge and could be built as a result of the ... [more ▼]

It has been postulated that memories of neardeath experiences (NDEs) could be (at least in part) reconstructions based on experiencers’ (NDErs) previous knowledge and could be built as a result of the individual’s attempt to interpret the confusing experience. From the point of view of the experiencer, NDE memories are perceived as being unrivalled memories due to its associated rich phenomenology. However, the scientific literature devoted to the cognitive functioning of NDErs in general, and their memory performance in particular, is rather limited. This study examined NDErs’ susceptibility to false memories using the Deese–Roediger–McDermott (DRM) paradigm. We included 20 NDErs who reported having had their experience in the context of a life-threatening event (Greyson NDE scale total score ≥7/32) and 20 volunteers (matched for age, gender, education level, and time since brain insult) who reported a life-threatening event but without a NDE. Both groups were presented with DRM lists for a recall task during which they were asked to assign “Remember/Know/Guess” judgements to any recalled response. In addition, they were later asked to complete a post-recall test designed to obtain estimates of activation and monitoring of critical lures. Results demonstrated that NDErs and volunteers were equally likely to produce false memories, but that NDErs recalled them more frequently associated with compelling illusory recollection. Of particular interest, analyses of activation and monitoring estimates suggest that NDErs and volunteers groups were equally likely to think of critical lures, but source monitoring was less successful in NDErs compared to volunteers. [less ▲]

Detailed reference viewed: 33 (2 ULg)
Full Text
Peer Reviewed
See detailSedation of Patients With Disorders of Consciousness During Neuroimaging: Effects on Resting State Functional Brain Connectivity.
KIRSCH, Murielle ULg; Guldenmund, P; Ali Bahri, Mohamed et al

in Anesthesia and Analgesia (2017), 124(2),

Detailed reference viewed: 38 (4 ULg)
Peer Reviewed
See detailGlobal disorders of consciousness.
Stender, Johan; Laureys, Steven ULg; Gosseries, Olivia ULg

in Velmans, Max; Schneider, Susan (Eds.) The Blackwell Companion to Consciousness (2017)

Detailed reference viewed: 47 (4 ULg)
Full Text
Peer Reviewed
See detailFunctional Connectivity Substrates for tDCS Response in Minimally Conscious State Patients
Cavaliere, Carlo ULg; Aiello, Marco; Di Perri, Carol ULg et al

in Frontiers in Cellular Neuroscience (2016)

Transcranial direct current stimulation (tDCS) is a non-invasive technique recently employed in disorders of consciousness, and determining a transitory recovery of signs of consciousness in almost half ... [more ▼]

Transcranial direct current stimulation (tDCS) is a non-invasive technique recently employed in disorders of consciousness, and determining a transitory recovery of signs of consciousness in almost half of minimally conscious state (MCS) patients. Although the rising evidences about its possible role in the treatment of many neurological and psychiatric conditions exist, no evidences exist about brain functional connectivity substrates underlying tDCS response. We retrospectively evaluated resting state functional Magnetic Resonance Imaging (fMRI) of 16 sub-acute and chronic MCS patients (6 tDCS responders) who successively received a single left dorsolateral prefrontal cortex (DLPFC) tDCS in a double-blind randomized cross-over trial. A seed-based approach for regions of left extrinsic control network (ECN) and default-mode network (DMN) was performed. tDCS responders showed an increased left intra-network connectivity for regions co-activated with left DLPFC, and significantly with left inferior frontal gyrus. Non-responders (NR) MCS patients showed an increased connectivity between left DLPFC and midline cortical structures, including anterior cingulate cortex and precuneus. Our findings suggest that a prior high connectivity with regions belonging to ECN can facilitate transitory recovery of consciousness in a subgroup of MCS patients that underwent tDCS treatment. Therefore, resting state-fMRI could be very valuable in detecting the neuronal conditions necessary for tDCS to improve behavior in MCS. [less ▲]

Detailed reference viewed: 28 (3 ULg)
Full Text
Peer Reviewed
See detailResting-state Network-specific Breakdown of Functional Connectivity during Ketamine Alteration of Consciousness in Volunteers
BONHOMME, Vincent ULg; VANHAUDENHUYSE, Audrey ULg; Demertzi, Athina ULg et al

in Anesthesiology (2016), 125(5), 873-878

Background: Consciousness-altering anesthetic agents disturb connectivity between brain regions composing the resting-state consciousness networks (RSNs). The default mode network (DMn), executive control ... [more ▼]

Background: Consciousness-altering anesthetic agents disturb connectivity between brain regions composing the resting-state consciousness networks (RSNs). The default mode network (DMn), executive control network, salience network (SALn), auditory network, sensorimotor network (SMn), and visual network sustain mentation. Ketamine modifies consciousness differently from other agents, producing psychedelic dreaming and no apparent interaction with the environment. The authors used functional magnetic resonance imaging to explore ketamine-induced changes in RSNs connectivity. Methods: Fourteen healthy volunteers received stepwise intravenous infusions of ketamine up to loss of responsiveness. Because of agitation, data from six subjects were excluded from analysis. RSNs connectivity was compared between absence of ketamine (wake state [W1]), light ketamine sedation, and ketamine-induced unresponsiveness (deep sedation [S2]). Results: Increasing the depth of ketamine sedation from W1 to S2 altered DMn and SALn connectivity and suppressed the anticorrelated activity between DMn and other brain regions. During S2, DMn connectivity, particularly between the medial prefrontal cortex and the remaining network (effect size β [95% CI]: W1 = 0.20 [0.18 to 0.22]; S2 = 0.07 [0.04 to 0.09]), and DMn anticorrelated activity (e.g., right sensory cortex: W1 = −0.07 [−0.09 to −0.04]; S2 = 0.04 [0.01 to 0.06]) were broken down. SALn connectivity was nonuniformly suppressed (e.g., left parietal operculum: W1 = 0.08 [0.06 to 0.09]; S2 = 0.05 [0.02 to 0.07]). Executive control networks, auditory network, SMn, and visual network were minimally affected. Conclusions: Ketamine induces specific changes in connectivity within and between RSNs. Breakdown of frontoparietal DMn connectivity and DMn anticorrelation and sensory and SMn connectivity preservation are common to ketamine and propofol-induced alterations of consciousness. [less ▲]

Detailed reference viewed: 62 (14 ULg)
Full Text
Peer Reviewed
See detailFunction–structure connectivity in patients with severe brain injury as measured by MRI-DWI and FDG-PET
Annen, Jitka ULg; Heine, Lizette ULg; Ziegler, Erik et al

in Human Brain Mapping (2016), 37(11), 3707-3720

Detailed reference viewed: 63 (24 ULg)
Full Text
Peer Reviewed
See detailCerebral metabolism before and after external trigeminal nerve stimulation in episodic migraine
MAGIS, Delphine ULg; D'Ostilio, Kevin ULg; Thibaut, Aurore ULg et al

in Cephalalgia : An International Journal of Headache (2016)

Detailed reference viewed: 38 (2 ULg)
Peer Reviewed
See detailRepeated Behavioral Assessments in Patients with Disorders of Consciousness
Wannez, Sarah ULg; Annen, Jitka ULg; Aubinet, Charlène ULg et al

Conference (2016, March 04)

The Coma Recovery Scale Revised (CRS-R) is considered as the most sensitive scale to assess patients with disorders of consciousness (DOC). Guidelines recommend repeated assessments because patients might ... [more ▼]

The Coma Recovery Scale Revised (CRS-R) is considered as the most sensitive scale to assess patients with disorders of consciousness (DOC). Guidelines recommend repeated assessments because patients might suffer from consciousness fluctuations, but it is not specified how many assessments are needed. The present study included 131 patients with DOC. They have been assessed at least 6 times during a 14-days period with the CRS-R. Results show that 5 CRS-R assessments are needed to reach a reliable diagnosis, and that all the CRS-R subscales are influenced by consciousness fluctuations. We here showed that consciousness fluctuations influence the behavioral diagnosis, and that 5 assessments within a short period of time are needed to get a reliable clinical diagnosis. [less ▲]

Detailed reference viewed: 123 (28 ULg)
Peer Reviewed
See detailDisorders of Consciousness
Bodart, Olivier ULg; Thibaut, Aurore ULg; Laureys, Steven ULg et al

in Citerio, G.; Smith, M.; Kofke, A. (Eds.) Oxford Textbook of neurocritical care (2016)

Detailed reference viewed: 249 (26 ULg)
Full Text
Peer Reviewed
See detailCortical reorganization in an astronaut's brain after long-duration spaceflight.
Demertzi, Athina ULg; Van Ombergen, Angelique; Tomilovskaya, Elena et al

in Brain Structure & Function (2016), 221(5), 2873-2876

To date, hampered physiological function after exposure to microgravity has been primarily attributed to deprived peripheral neuro-sensory systems. For the first time, this study elucidates alterations in ... [more ▼]

To date, hampered physiological function after exposure to microgravity has been primarily attributed to deprived peripheral neuro-sensory systems. For the first time, this study elucidates alterations in human brain function after long-duration spaceflight. More specifically, we found significant differences in resting-state functional connectivity between motor cortex and cerebellum, as well as changes within the default mode network. In addition, the cosmonaut showed changes in the supplementary motor areas during a motor imagery task. These results highlight the underlying neural basis for the observed physiological deconditioning due to spaceflight and are relevant for future interplanetary missions and vestibular patients. [less ▲]

Detailed reference viewed: 59 (8 ULg)
Full Text
Peer Reviewed
See detailCorrelation between resting state fMRI total neuronal activity and PET metabolism in healthy controls and patients with disorders of consciousness
Soddu, Andrea ULg; Gomez, Francisco; Heine, Lizette ULg et al

in Brain and Behavior (2016), 6(1), 1-15

Introduction: The mildly invasive 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) is a well-established imaging technique to measure ‘resting state’ cerebral metabolism. This technique made ... [more ▼]

Introduction: The mildly invasive 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) is a well-established imaging technique to measure ‘resting state’ cerebral metabolism. This technique made it possible to assess changes in metabolic activity in clinical applications, such as the study of severe brain injury and disorders of consciousness. Objective: We assessed the possi- bility of creating functional MRI activity maps, which could estimate the rela- tive levels of activity in FDG-PET cerebral metabolic maps. If no metabolic absolute measures can be extracted, our approach may still be of clinical use in centers without access to FDG-PET. It also overcomes the problem of recogniz- ing individual networks of independent component selection in functional mag- netic resonance imaging (fMRI) resting state analysis. Methods: We extracted resting state fMRI functional connectivity maps using independent component analysis and combined only components of neuronal origin. To assess neu- ronality of components a classification based on support vector machine (SVM) was used. We compared the generated maps with the FDG-PET maps in 16 healthy controls, 11 vegetative state/unresponsive wakefulness syndrome patients and four locked-in patients. Results: The results show a significant similarity with q = 0.75  0.05 for healthy controls and q = 0.58  0.09 for vegetative state/unresponsive wakefulness syndrome patients between the FDG- PET and the fMRI based maps. FDG-PET, fMRI neuronal maps, and the conjunction analysis show decreases in frontoparietal and medial regions in vegetative patients with respect to controls. Subsequent analysis in locked-in syndrome patients produced also consistent maps with healthy controls. Conclusions: The constructed resting state fMRI functional connectivity map points toward the possibility for fMRI resting state to estimate relative levels of activity in a metabolic map. [less ▲]

Detailed reference viewed: 92 (17 ULg)
Full Text
See detailPain and Nociception in Disorders of Consciousness
Chatelle, Camille ULg; LAUREYS, Steven ULg; Demertzi, Athina ULg

in Luis Garcia-Larrea, France; Jackson, Philip L. (Eds.) Pain and the Conscious Brain (2016)

Detailed reference viewed: 82 (6 ULg)
Full Text
Peer Reviewed
See detailA human brain network derived from coma-causing brainstem lesions
Fischer, David; Boes, A.D; Demertzi, Athina ULg et al

in Neurology (2016), 87(23), 2427-2434

OBJECTIVE To characterize a brainstem location specific to coma-causing lesions, and its functional connectivity network. METHODS We compared 12 coma-causing brainstem lesions to 24 control brainstem ... [more ▼]

OBJECTIVE To characterize a brainstem location specific to coma-causing lesions, and its functional connectivity network. METHODS We compared 12 coma-causing brainstem lesions to 24 control brainstem lesions using voxel-based lesion-symptom mapping in a case-control design to identify a site significantly associated with coma. We next used resting-state functional connectivity from a healthy cohort to identify a network of regions functionally connected to this brainstem site. We further investigated the cortical regions of this network by comparing their spatial topography to that of known networks and by evaluating their functional connectivity in patients with disorders of consciousness. RESULTS A small region in the rostral dorsolateral pontine tegmentum was significantly associated with coma-causing lesions. In healthy adults, this brainstem site was functionally connected to the ventral anterior insula (AI) and pregenual anterior cingulate cortex (pACC). These cortical areas aligned poorly with previously defined resting-state networks, better matching the distribution of von Economo neurons. Finally, connectivity between the AI and pACC was disrupted in patients with disorders of consciousness, and to a greater degree than other brain networks. CONCLUSIONS Injury to a small region in the pontine tegmentum is significantly associated with coma. This brainstem site is functionally connected to 2 cortical regions, the AI and pACC, which become disconnected in disorders of consciousness. This network of brain regions may have a role in the maintenance of human consciousness [less ▲]

Detailed reference viewed: 3 (0 ULg)