References of "Lamy, Cédric"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailAllosteric block of KCa2 channels by apamin
Lamy, Cédric ULg; Goodchild, Samuel J; Weatherall, Kate L et al

in Journal of Biological Chemistry (2010)

Detailed reference viewed: 57 (23 ULg)
Full Text
Peer Reviewed
See detailInhibition of KCa 2.2 and KCa 2.3 channel currents by protonation of outer pore histidine residues
Goodchild, Samuel; Lamy, Cédric ULg; Seutin, Vincent ULg et al

in Journal of General Physiology (2009), 134(4), 295-308

Detailed reference viewed: 68 (12 ULg)
Full Text
Peer Reviewed
See detailSK Channel blockade promotes burst firing in dorsal raphe serotonergic neurons
Rouchet, Nathalie ULg; Waroux, Olivier ULg; Lamy, Cédric ULg et al

in European Journal of Neuroscience (2008), 28(6), 1108-15

Detailed reference viewed: 61 (32 ULg)
Full Text
Peer Reviewed
See detailBis-tetrahydroisoquinoline derivatives: AG525E1, a new step in the search for non-quaternary non-peptidic small conductance Ca2+-activated K+ channel blockers
Graulich, Amaury ULg; Lamy, Cédric ULg; Alleva, Livia ULg et al

in Bioorganic & Medicinal Chemistry Letters (2008), 18(11), 3440-3445

So far, small conductance Ca2+-activated K+ channel (SK) blockers mostly consist of quaternary ammonium derivatives or peptides. Due to their physicochemical properties, these blockers are not suitable to ... [more ▼]

So far, small conductance Ca2+-activated K+ channel (SK) blockers mostly consist of quaternary ammonium derivatives or peptides. Due to their physicochemical properties, these blockers are not suitable to study the physiological roles of SK channels in the central nervous system in vivo. Herein, we report the discovery of a chiral bis-tertiary amine with SK blocking properties from chemical modulation of laudanosine. AG525E1 has an affinity for SK channels (K-i = 293 nM) approximately 100-fold higher than the tertiary compound laudanosine (K-i similar to 30 mu M) and similar to the charged compound dequalinium (K-i = 221 nM). AG525E1 equipotently blocks SK1, SK2 and SK3 currents in transfected cell lines. Because of its basic and lipophilic properties, it can reach central SK targets. (c) 2008 Elsevier Ltd. All rights reserved. [less ▲]

Detailed reference viewed: 70 (22 ULg)
Full Text
Peer Reviewed
See detailSynthesis and Radioligand Binding Studies of Bis-Isoquinolinium Derivatives as Small Conductance Ca(2+)-Activated K(+) Channel Blockers
Graulich, Amaury ULg; Dilly, Sébastien ULg; Farce, Amaury et al

in Journal of Medicinal Chemistry (2007), 50(21), 5070-5075

Starting from the scaffold of N-methyllaudanosine and N-methylnoscapine, which are known small conductance Ca2+-activated K+ channel blockers, original bis-isoquinolinium derivatives were synthezised and ... [more ▼]

Starting from the scaffold of N-methyllaudanosine and N-methylnoscapine, which are known small conductance Ca2+-activated K+ channel blockers, original bis-isoquinolinium derivatives were synthezised and evaluated using binding studies, electrophysiology, and molecular modeling. These quaternary compounds are powerful blockers, and the most active ones have 10 times more affinity for the channels than dequalinium. The unsubstituted compounds possess a weaker affinity than the analogues having a 6,7-dimethoxy- or a 6,7,8-trimethoxy substitution. The length of the linker has no influence in the alkane derivatives. In relation to the xylene derivatives, the affinities are higher for the ortho and meta isomers. These results are well corroborated by a molecular modeling study. Finally, the most effective compounds have been tested in electrophysiological experiments on midbrain dopaminergic neurons and demonstrate the blocking potential of the apamin-sensitive after-hyperpolarization. [less ▲]

Detailed reference viewed: 76 (23 ULg)
Full Text
Peer Reviewed
See detailLong-term effects of JL 13, a potential atypical antipsychotic, on Ionotropic glutamate receptors
Tarazi, Frank I.; Moran-Gates, Taylor; Gardner, Matthew P. et al

in Journal of Molecular Neuroscience (2007), 32(3), 192-198

Changes in ionotropic glutamate (Glu) N-methyl-D-aspartic acid (NMDA), and 2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl)propionic acid (AMPA) receptors in rat forebrain regions were autoradiographically ... [more ▼]

Changes in ionotropic glutamate (Glu) N-methyl-D-aspartic acid (NMDA), and 2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl)propionic acid (AMPA) receptors in rat forebrain regions were autoradiographically quantified after continuous infusion of JL 13 [(5-(4-methylpiperazin-1-yl)-8-chloro-pyrido[2,3-b][1,5]benzoxazepine furnarate] for 28 days using osmotic minipumps, and compared to the effects of representative typical (haloperidol) and atypical (clozapine, olanzapine, and risperidone) antipsychotic drugs from previous studies. Similar to other atypical and not typical antipsychotics, JL 13 decreased labeling of NMDA receptors in medial and lateral caudate-putamen (CPu; by 40%). These findings indicate that downregulation of NMDA receptors by JL 13 and other atypical antipsychotic agents in CPu may contribute to their low risk of extrapyramidal side effects. In addition, and similar to olanzapine and risperidone, JL 13 increased AMPA receptor binding in CPu (by 42%). Changes in AMPA receptors may contribute to psychopharmacological properties of JL 13 and other atypical agents. Similar to clozapine, JL 13 did not alter levels of NMDA and AMPA receptors in hippocampus and entorhinal cortex. Long-term effects of JL 13 on ionotropic Glu receptors, as well as on other dopamine and serotonin receptors, support the atypical antipsychotic profile of this novel agent. [less ▲]

Detailed reference viewed: 25 (3 ULg)
Full Text
Peer Reviewed
See detailSynthesis and radioligand binding studies of methoxylated 1,2,3,4-tetrahydroisoquinolinium derivatives as ligands of the apamin-sensitive Ca2+- activated K+ channels
Graulich, Amaury ULg; Scuvée-Moreau, Jacqueline ULg; Alleva, Livia ULg et al

in Journal of Medicinal Chemistry (2006), 49(24), 7208-7214

Several methoxylated 1,2,3,4-tetrahydroisoquinoliniums derived from N-methyl-laudanosine and N-methyl-noscapine were synthesized and evaluated for their affinity for apamin-sensitive binding sites. The ... [more ▼]

Several methoxylated 1,2,3,4-tetrahydroisoquinoliniums derived from N-methyl-laudanosine and N-methyl-noscapine were synthesized and evaluated for their affinity for apamin-sensitive binding sites. The quaternary ammonium derivatives have a higher affinity with regard to the tertiary amines. 6,7-Dimethoxy analogues possess a higher affinity than the 6,8- and 7,8- dimethoxy isomers. A 3,4-dimethoxybenzyl or a 2-naphthylmethyl moiety in C-1 position are more favorable than a 3,4-dimethoxyphenethyl group. Smaller groups such as propyl or isobutyl are unfavorable. In 6,7-dimethoxy analogues, increasing the size and lipophilicity with a naphthyl group in the C-1 position leads to a slight increase of affinity, while the same group in the 6,7,8- trimethoxy series is less favorable. The 6,7,8- trimethoxy derivative 3f is the first tertiary amine in the series to possess an affinity close to that of N-methyl-laudanosine and N-methyl-noscapine. Moreover, electrophysiological studies show that the most effective compound 4f blocks the apamin-sensitive afterhyperpolarization in rat dopaminergic neurons. [less ▲]

Detailed reference viewed: 28 (13 ULg)