References of "Lambert, Didier"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailChemoresistance to Valproate Treatment of Bovine Leukemia Virus-Infected Sheep; Identification of Improved HDAC Inhibitors
Gillet, Nicolas ULg; Vandermeers, Fabian ULg; De Brogniez, Alix ULg et al

in Pathogens (2012), (2012-1), 65-82

We previously proved that a histone deacetylase inhibitor (valproate, VPA) decreases the number of leukemic cells in bovine leukemia virus (BLV)-infected sheep. Here, we characterize the mechanisms ... [more ▼]

We previously proved that a histone deacetylase inhibitor (valproate, VPA) decreases the number of leukemic cells in bovine leukemia virus (BLV)-infected sheep. Here, we characterize the mechanisms initiated upon interruption of treatment. We observed that VPA treatment is followed by a decrease of the B cell counts and proviral loads (copies per blood volume). However, all sheep eventually relapsed after different periods of time and became refractory to further VPA treatment. Sheep remained persistently infected with BLV. B lymphocytes isolated throughout treatment and relapse were responsive to VPA-induced apoptosis in cell culture. B cell proliferation is only marginally affected by VPA ex vivo. Interestingly, in four out of five sheep, ex vivo viral expression was nearly undetectable at the time of relapse. In two sheep, a new tumoral clone arose, most likely revealing a selection process exerted by VPA in vivo. We conclude that the interruption of VPA treatment leads to the resurgence of the leukemia in BLV-infected sheep and hypothesize that resistance to further treatment might be due to the failure of viral expression induction. The development of more potent HDAC inhibitors and/or the combination with other compounds can overcome chemoresistance. These observations in the BLV model may be important for therapies against the related Human T-lymphotropic virus type 1. [less ▲]

Detailed reference viewed: 24 (5 ULg)
Full Text
See detailUnderstanding angiogenesis through novel epigenetic modulators
Shiva Shankar, Thammadihalli Veerasangaiah ULg; Sulka, Béatrice; Blacher, Silvia ULg et al

Scientific conference (2012, June 22)

DNA methylation and histone deacetylation are two key epigenetic modifications that play central role in regulation of gene expression. Several studies have shown that histone deacetylases (HDAC) and DNA ... [more ▼]

DNA methylation and histone deacetylation are two key epigenetic modifications that play central role in regulation of gene expression. Several studies have shown that histone deacetylases (HDAC) and DNA methyltransferases (DNMT) inhibitors are potent anti-angiogenic compounds. Though combination of HDAC and DNMT inhibitors are now being examined in clinical trials of hematological malignancies, little work has been done to understand the effect of this combination on physiological and tumoral angiogenesis. We have designed and tested a family of twin drugs with intrinsic HDAC and DNMT inhibitory activities in relevant models of angiogenesis in vitro (Human Umbilical Vein Endothelial Cells – HUVEC and aortic ring) and in vivo (chick chorioallantoic membrane and Zebrafish). We have identified a lead compound having quantifiable anti-angiogenic effect without cytotoxicity affecting global histone acetylation and DNA methylation levels. In order to elucidate its anti-angiogenic mechanism, we characterized gene expression pattern simultaneously with the methylation profile of HUVEC cells treated with the lead compound and reference epigenetic modulators. This approach based on parallel microarray analyses permitted us to underscore a list of genes exclusively affected by the lead compound but not by other HDAC or DNMT inhibitors. These genes were then analyzed using the Ingenuity Pathway software revealing potential involvement of a subset of genes in angiogenesis. Our present work is focused on exploring the exact role of these genes on angiogenesis using RNA silencing and vectors cloned with genes of interest. We are using these novel epigenetic modulators as a tool to understand the regulatory mechanism of angiogenesis and to develop effective approaches to treat cancer. [less ▲]

Detailed reference viewed: 69 (13 ULg)
Full Text
See detailNovel HDAC/DNMT Twin inhibitors interfere with angiogenesis
Shiva Shankar, Thammadihalli Veerasangaiah ULg; Sulka, Béatrice ULg; Blacher, Silvia ULg et al

Poster (2011, January 31)

DNA methylation and histone deacetylation are two key epigenetic modifications that play central role in regulation of gene expression. Several studies have shown that histone deacetylases (HDAC) and DNA ... [more ▼]

DNA methylation and histone deacetylation are two key epigenetic modifications that play central role in regulation of gene expression. Several studies have shown that histone deacetylases (HDAC) and DNA methyltransferases (DNMT) inhibitors are potent anti-angiogenic compounds. Though combination of HDAC and DNMT inhibitors are now being examined in clinical trials of hematological malignancies, little work has been done to understand the effect of this combination on physiological and tumoral angiogenesis. We have designed and tested a family of twin drugs with intrinsic HDAC and DNMT inhibitory activities in relevant models of angiogenesis in vitro (Human Umbilical Vein Endothelial Cells – HUVEC and aortic ring) and in vivo (chick chorioallantoic membrane and Zebrafish). We have identified a lead compound having quantifiable anti-angiogenic effect without cytotoxicity affecting global histone acetylation and DNA methylation levels. In order to elucidate its anti-angiogenic mechanism, we characterized gene expression pattern simultaneously with the methylation profile of HUVEC cells treated with the lead compound and reference epigenetic modulators. This approach based on parallel microarray analyses permitted us to underscore a list of genes exclusively affected by the lead compound but not by other HDAC or DNMT inhibitors. These genes were then analyzed using the Ingenuity Pathway software revealing potential involvement of a subset of genes in angiogenesis. Our present aim is to validate the expression levels of a series of genes with respect to epigenetic mechanisms (histone modifications and DNA methylation). Finally, the biological relevance of the target genes will be explored by RNA silencing. Hence, we are using these novel epigenetic modulators as a tool to understand the regulatory mechanism of angiogenesis and to develop effective approaches to treat cancer. [less ▲]

Detailed reference viewed: 72 (17 ULg)
Full Text
Peer Reviewed
See detailNovel HDAC/DNMT Twin Inhibitors Interfere with Angiogenesis
Shiva Shankar, Thammadihalli Veerasangaiah ULg; Sulka, Béatrice ULg; Blacher, Silvia ULg et al

Poster (2011)

DNA methylation and histone deacetylation are two key epigenetic modifications that play central role in regulation of gene expression. Several studies have shown that histone deacetylases (HDAC) and DNA ... [more ▼]

DNA methylation and histone deacetylation are two key epigenetic modifications that play central role in regulation of gene expression. Several studies have shown that histone deacetylases (HDAC) and DNA methyltransferases (DNMT) inhibitors are potent anti-angiogenic compounds. Though combination of HDAC and DNMT inhibitors are now being examined in clinical trials of hematological malignancies, little work has been done to understand the effect of this combination on physiological and tumoral angiogenesis. We have designed and tested a family of twin drugs with intrinsic HDAC and DNMT inhibitory activities in relevant models of angiogenesis in vitro (Human Umbilical Vein Endothelial Cells – HUVEC and aortic ring) and in vivo (chick chorioallantoic membrane and Zebrafish). We have identified a lead compound having quantifiable anti-angiogenic effect without cytotoxicity affecting global histone acetylation and DNA methylation levels. In order to elucidate its anti-angiogenic mechanism, we characterized gene expression pattern simultaneously with the methylation profile of HUVEC cells treated with the lead compound and reference epigenetic modulators. This approach based on parallel microarray analyses permitted us to underscore a list of genes exclusively affected by the lead compound but not by other HDAC or DNMT inhibitors. These genes were then analyzed using the Ingenuity Pathway software revealing potential involvement of a subset of genes in angiogenesis. Our present aim is to validate the expression levels of a series of genes with respect to epigenetic mechanisms (histone modifications and DNA methylation). Finally, the biological relevance of the target genes will be explored by RNA silencing. Hence, we are using these novel epigenetic modulators as a tool to understand the regulatory mechanism of angiogenesis and to develop effective approaches to treat cancer. [less ▲]

Detailed reference viewed: 191 (54 ULg)
Full Text
Peer Reviewed
See detailNovel HDAC/DNMT twin inhibitors interfere with angiogenesis
Shiva Shankar, Thammadihalli Veerasangaiah ULg; Sulka, Béatrice; Blacher, Silvia ULg et al

Poster (2010)

DNA methylation and histone deacetylation are two key epigenetic modifications that play central role in regulation of gene expression. Several studies have shown that histone deacetylases (HDAC) and DNA ... [more ▼]

DNA methylation and histone deacetylation are two key epigenetic modifications that play central role in regulation of gene expression. Several studies have shown that histone deacetylases (HDAC) and DNA methyltransferases (DNMT) inhibitors are potent antiangiogenic compounds. Though combination of HDAC and DNMT inhibitors are now being examined in clinical trials of hematological malignancies, very little work has been done to understand the effect of this combination on normal and tumoral angiogenesis. We have designed and tested a family of twin drugs with intrinsic HDAC and DNMT inhibitory activities in relevant models of angiogenesis in vitro (endothelial cells, pericytes and the 3D aortic ring assay) and in vivo (the chick chorioallantoic membrane assay). We have identified a lead compound having quantifiable antiangiogenic effect without cytotoxicity associated with increased global acetylation and decreased DNA methylation levels. This compound is presently used to develop effective approaches to treat cancer by modulating the process of angiogenesis. [less ▲]

Detailed reference viewed: 185 (67 ULg)