References of "Labadie, Lucas"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailImpact of ηEarth on the Capabilities of Affordable Space Missions to Detect Biosignatures on Extrasolar Planets
Léger, Alain; Defrère, Denis; Malbet, Fabien et al

in Astrophysical Journal (2015), 808

We present an analytic model to estimate the capabilities of space missions dedicated to the search for biosignatures in the atmosphere of rocky planets located in the habitable zone of nearby stars ... [more ▼]

We present an analytic model to estimate the capabilities of space missions dedicated to the search for biosignatures in the atmosphere of rocky planets located in the habitable zone of nearby stars. Relations between performance and mission parameters, such as mirror diameter, distance to targets, and radius of planets, are obtained. Two types of instruments are considered: coronagraphs observing in the visible, and nulling interferometers in the thermal infrared. Missions considered are: single-pupil coronagraphs with a 2.4 m primary mirror, and formation-flying interferometers with 4 × 0.75 m collecting mirrors. The numbers of accessible planets are calculated as a function of η[SUB]Earth[/SUB]. When Kepler gives its final estimation for η[SUB]Earth[/SUB], the model will permit a precise assessment of the potential of each instrument. Based on current estimations, η[SUB]Earth[/SUB] = 10% around FGK stars and 50% around M stars, the coronagraph could study in spectroscopy only ∼1.5 relevant planets, and the interferometer ∼14.0. These numbers are obtained under the major hypothesis that the exozodiacal light around the target stars is low enough for each instrument. In both cases, a prior detection of planets is assumed and a target list established. For the long-term future, building both types of spectroscopic instruments, and using them on the same targets, will be the optimal solution because they provide complementary information. But as a first affordable space mission, the interferometer looks the more promising in terms of biosignature harvest. [less ▲]

Detailed reference viewed: 27 (5 ULg)
Full Text
Peer Reviewed
See detailHigh precision astrometry mission for the detection and characterization of nearby habitable planetary systems with the Nearby Earth Astrometric Telescope (NEAT)
Malbet, Fabien; Léger, Alain; Shao, Michael et al

in Experimental Astronomy (2012), 34(2), 385-413

A complete census of planetary systems around a volume-limited sample of solar-type stars (FGK dwarfs) in the Solar neighborhood (d ≤ 15 pc) with uniform sensitivity down to Earth-mass planets within ... [more ▼]

A complete census of planetary systems around a volume-limited sample of solar-type stars (FGK dwarfs) in the Solar neighborhood (d ≤ 15 pc) with uniform sensitivity down to Earth-mass planets within their Habitable Zones out to several AUs would be a major milestone in extrasolar planets astrophysics. This fundamental goal can be achieved with a mission concept such as NEAT—the Nearby Earth Astrometric Telescope. NEAT is designed to carry out space-borne extremely-high-precision astrometric measurements at the 0.05 μas (1 σ) accuracy level, sufficient to detect dynamical effects due to orbiting planets of mass even lower than Earth's around the nearest stars. Such a survey mission would provide the actual planetary masses and the full orbital geometry for all the components of the detected planetary systems down to the Earth-mass limit. The NEAT performance limits can be achieved by carrying out differential astrometry between the targets and a set of suitable reference stars in the field. The NEAT instrument design consists of an off-axis parabola single-mirror telescope (D = 1 m), a detector with a large field of view located 40 m away from the telescope and made of 8 small movable CCDs located around a fixed central CCD, and an interferometric calibration system monitoring dynamical Young's fringes originating from metrology fibers located at the primary mirror. The mission profile is driven by the fact that the two main modules of the payload, the telescope and the focal plane, must be located 40 m away leading to the choice of a formation flying option as the reference mission, and of a deployable boom option as an alternative choice. The proposed mission architecture relies on the use of two satellites, of about 700 kg each, operating at L2 for 5 years, flying in formation and offering a capability of more than 20,000 reconfigurations. The two satellites will be launched in a stacked configuration using a Soyuz ST launch vehicle. The NEAT primary science program will encompass an astrometric survey of our 200 closest F-, G- and K-type stellar neighbors, with an average of 50 visits each distributed over the nominal mission duration. The main survey operation will use approximately 70% of the mission lifetime. The remaining 30% of NEAT observing time might be allocated, for example, to improve the characterization of the architecture of selected planetary systems around nearby targets of specific interest (low-mass stars, young stars, etc.) discovered by Gaia, ground-based high-precision radial-velocity surveys, and other programs. With its exquisite, surgical astrometric precision, NEAT holds the promise to provide the first thorough census for Earth-mass planets around stars in the immediate vicinity of our Sun. [less ▲]

Detailed reference viewed: 92 (21 ULg)
Full Text
Peer Reviewed
See detailDarwin---an experimental astronomy mission to search for extrasolar planets
Cockell, Charles S; Herbst, Tom; Léger, Alain et al

in Experimental Astronomy (2009), 23

As a response to ESA call for mission concepts for its Cosmic Vision 2015--2025 plan, we propose a mission called Darwin. Its primary goal is the study of terrestrial extrasolar planets and the search for ... [more ▼]

As a response to ESA call for mission concepts for its Cosmic Vision 2015--2025 plan, we propose a mission called Darwin. Its primary goal is the study of terrestrial extrasolar planets and the search for life on them. In this paper, we describe different characteristics of the instrument. [less ▲]

Detailed reference viewed: 72 (2 ULg)