References of "Josse, Claire"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailNeoadjuvant chemotherapy in breast cancer induces miR-34a and miR-122 expression
FRERES, Pierre ULg; JOSSE, Claire ULg; Bovy, Nicolas ULg et al

in Journal of Cellular Physiology (2014)

Circulating microRNAs (miRNAs) have been extensively studied in cancer as biomarkers but little is known regarding the influence of anti-cancer drugs on their expression levels. In this article, we ... [more ▼]

Circulating microRNAs (miRNAs) have been extensively studied in cancer as biomarkers but little is known regarding the influence of anti-cancer drugs on their expression levels. In this article, we describe the modifications of circulating miRNAs profile after neoadjuvant chemotherapy (NAC) for breast cancer. The expression of 188 circulating miRNAs was assessed in the plasma of 25 patients before and after NAC by RT-qPCR. Two miRNAs, miR- 34a and miR-122, that were significantly increased after NAC, were measured in tumor tissue before and after chemotherapy in 7 patients with pathological partial response (pPR) to NAC. These 2 chemotherapy-induced miRNAs were further studied in the plasma of 22 patients with adjuvant chemotherapy (AC) as well as in 12 patients who did not receive any chemotherapy. Twenty-five plasma miRNAs were modified by NAC. Among these miRNAs, miR-34a and miR-122 were highly upregulated, notably in pPR patients with aggressive breast cancer. Furthermore, miR-34a level was elevated in the remaining tumor tissue after NAC treatment. Studying the kinetics of circulating miR-34a and miR-122 expression during NAC revealed that their levels were especially increased after anthracycline-based chemotherapy. Comparisons of the plasma miRNA profiles after NAC and AC suggested that chemotherapy-induced miRNAs originated from both tumoral and non-tumoral compartments. This study is the first to demonstrate that NAC specifically induces miRNA expression in plasma and tumor tissue, which might be involved in the anti-tumor effects of chemotherapy in breast cancer patients. [less ▲]

Detailed reference viewed: 21 (5 ULg)
Full Text
Peer Reviewed
See detailIdentification of a microRNA landscape targeting the PI3K/Akt signaling pathway in inflammation-induced colorectal carcinogenesis
JOSSE, Claire ULg; Bouznad, Nassim ULg; Geurts, Pierre ULg et al

in American Journal of Physiology - Gastrointestinal and Liver Physiology (2014), 306

Inflammation can contribute to tumor formation; however, markers that predict progression are still lacking. In the present study, the well-established azoxymethane (AOM)/dextran sulfate sodium (DSS ... [more ▼]

Inflammation can contribute to tumor formation; however, markers that predict progression are still lacking. In the present study, the well-established azoxymethane (AOM)/dextran sulfate sodium (DSS)-induced mouse model of colitis-associated cancer was used to analyze microRNA (miRNA) modulation accompanying inflammation-induced tumor development and to determine whether inflammation-triggered miRNA alterations affect the expression of genes or pathways involved in cancer. A miRNA microarray experiment was performed to establish miRNA expression profiles in mouse colon at early and late time points during inflammation and/or tumor growth. Chronic inflammation and carcinogenesis were associated with distinct changes in miRNA expression. Nevertheless, prediction algorithms of miRNA-mRNA interactions and computational analyses based on ranked miRNA lists consistently identified putative target genes that play essential roles in tumor growth or that belong to key carcinogenesis-related signaling pathways. We identified PI3K/Akt and the insulin growth factor-1 (IGF-1) as major pathways being affected in the AOM/DSS model. DSS-induced chronic inflammation downregulates miR-133a and miR-143/145, which is reportedly associated with human colorectal cancer and PI3K/Akt activation. Accordingly, conditioned medium from inflammatory cells decreases the expression of these miRNA in colorectal adenocarcinoma Caco-2 cells. Overexpression of miR-223, one of the main miRNA showing strong upregulation during AOM/DSS tumor growth, inhibited Akt phosphorylation and IGF-1R expression in these cells. Cell sorting from mouse colons delineated distinct miRNA expression patterns in epithelial and myeloid cells during the periods preceding and spanning tumor growth. Hence, cell-type-specific miRNA dysregulation and subsequent PI3K/Akt activation may be involved in the transition from intestinal inflammation to cancer. [less ▲]

Detailed reference viewed: 32 (6 ULg)
Full Text
Peer Reviewed
See detailAspects moléculaires du cancer du sein triple négatif et les implications thérapeutiques
COLLIGNON, Joëlle ULg; Struman, Ingrid ULg; Tabruyn, Sébastien ULg et al

in Revue Médicale de Liège (2011), 66(5-6), 393-396

Detailed reference viewed: 160 (28 ULg)
Full Text
Peer Reviewed
See detailSystematic chromosomal aberrations found in murine bone marrow-derived mesenchymal stem cells.
Josse, Claire ULg; Schoemans, R.; Niessen, Neville-Andrew ULg et al

in Stem Cells & Development (2010), 19(8), 1167-1173

Mesenchymal stem cells (MSCs) are studied as a cellular source for the treatment of various diseases. In this work, we isolated and cultivated murine bone marrow-derived MSCs. After a first observation of ... [more ▼]

Mesenchymal stem cells (MSCs) are studied as a cellular source for the treatment of various diseases. In this work, we isolated and cultivated murine bone marrow-derived MSCs. After a first observation of a solid tumour in a mouse injected with these cells, we systematically explored their chromosomal stability. We observed in all the cytogenetically analysed cases gross chromosomal alterations every time the MSCs went through the senescence crisis while the lymphocytes from the same animals showed a normal chromosome count. This observation was confirmed in different mouse strains, with different culture protocols, and even in short-term cultures after an hematopoietic cell negative immunodepletion performed in order to accelerate the isolation procedure. Therefore, we conclude that murine MSCs display high chromosomal instability, can generate tumours, and that care must be taken before using them for the evaluation of MSC therapeutic potential. [less ▲]

Detailed reference viewed: 56 (16 ULg)
Full Text
Peer Reviewed
See detailThe umbilical cord matrix is a better source of mesenchymal stem cells (MSC) than the umbilical cord blood.
Zeddou, Mustapha ULg; Briquet, Alexandra ULg; Relic, Biserka ULg et al

in Cell Biology International (2010), 34(7), 693-701

Many studies have drawn attention to the emerging role of MSC (mesenchymal stem cells) as a promising population supporting new clinical concepts in cellular therapy. However, the sources from which these ... [more ▼]

Many studies have drawn attention to the emerging role of MSC (mesenchymal stem cells) as a promising population supporting new clinical concepts in cellular therapy. However, the sources from which these cells can be isolated are still under discussion. Whereas BM (bone marrow) is presented as the main source of MSC, despite the invasive procedure related to this source, the possibility of isolating sufficient numbers of these cells from UCB (umbilical cord blood) remains controversial. Here, we present the results of experiments aimed at isolating MSC from UCB, BM and UCM (umbilical cord matrix) using different methods of isolation and various culture media that summarize the main procedures and criteria reported in the literature. Whereas isolation of MSC were successful from BM (10:10) and (UCM) (8:8), only one cord blood sample (1:15) gave rise to MSC using various culture media [DMEM (Dulbecco's modified Eagle's medium) +5% platelet lysate, DMEM+10% FBS (fetal bovine serum), DMEM+10% human UCB serum, MSCGM] and different isolation methods [plastic adherence of total MNC (mononuclear cells), CD3+/CD19+/CD14+/CD38+-depleted MNC and CD133+- or LNGFR+-enriched MNC]. MSC from UCM and BM were able to differentiate into adipocytes, osteocytes and hepatocytes. The expansion potential was highest for MSC from UCM. The two cell populations had CD90+/CD73+/CD105+ phenotype with the additional expression of SSEA4 and LNGFR for BM MSC. These results clearly exclude UCB from the list of MSC sources for clinical use and propose instead UCM as a rich, non-invasive and abundant source of MSC. [less ▲]

Detailed reference viewed: 66 (16 ULg)
Full Text
Peer Reviewed
See detailOligodendrocyte development and myelinogenesis are not impaired by high concentrations of phenylalanine or its metabolites.
Schoemans, Renaud; Aigrot, Marie-Stephane; Wu, Chaohong et al

in Journal of Inherited Metabolic Disease (2010), 33(2), 113-20

Phenylketonuria (PKU) is a metabolic genetic disease characterized by deficient phenylalanine hydroxylase (PAH) enzymatic activity. Brain hypomyelination has been reported in untreated patients, but its ... [more ▼]

Phenylketonuria (PKU) is a metabolic genetic disease characterized by deficient phenylalanine hydroxylase (PAH) enzymatic activity. Brain hypomyelination has been reported in untreated patients, but its mechanism remains unclear. We therefore investigated the influence of phenylalanine (Phe), phenylpyruvate (PP), and phenylacetate (PA) on oligodendrocytes. We first showed in a mouse model of PKU that the number of oligodendrocytes is not different in corpus callosum sections from adult mutants or from control brains. Then, using enriched oligodendroglial cultures, we detected no cytotoxic effect of high concentrations of Phe, PP, or PA. Finally, we analyzed the impact of Phe, PP, and PA on the myelination process in myelinating cocultures using both an in vitro index of myelination, based on activation of the myelin basic protein (MBP) promoter, and the direct quantification of myelin sheaths by both optical measurement and a bioinformatics method. None of these parameters was affected by the increased levels of Phe or its derivatives. Taken together, our data demonstrate that high levels of Phe, such as in PKU, are unlikely to directly induce brain hypomyelination, suggesting involvement of alternative mechanisms in this myelination defect. [less ▲]

Detailed reference viewed: 41 (7 ULg)
Full Text
Peer Reviewed
See detailChanges in function of iron-loaded alveolar macrophages after in vivo administration of desferrioxamine and/or chloroquine.
Legssyer, Rachida; Josse, Claire ULg; Piette, Jacques ULg et al

in Journal of Inorganic Biochemistry (2003), 94(1-2), 36-42

Both desferrioxamine (DFO) and chloroquine can significantly reduce hepatic iron in experimental animals with iron overload by chelating iron from the low-molecular-weight pool or decreasing iron uptake ... [more ▼]

Both desferrioxamine (DFO) and chloroquine can significantly reduce hepatic iron in experimental animals with iron overload by chelating iron from the low-molecular-weight pool or decreasing iron uptake by the transferrin-transferrin receptor cycle, respectively. However, no previous studies have investigated whether combination therapy of these two drugs would further decrease the tissue iron overload as well as iron-induced toxicity. Chloroquine administration, 15 mg/kg, 5x/week, to rats during the iron loading regime, 10 mg/kg, 3x/week for 4 weeks, significantly decreased both hepatic (54%) and macrophage iron content (24%). However when administered in combination with desferrioxamine, 10 mg/kg, 3x/week for 2 weeks at the cessation of iron loading, no further reduction of hepatic iron content was noted while the iron content of the macrophages significantly increased, possibly indicating the flux of ferrioxamine through these cells. Further studies are warranted to investigate the speciation of iron within these macrophages. Macrophages isolated from chloroquine-treated iron loaded rats showed a reduction in latent NFkappaB activation and a significant increase in lipopolysaccharide-stimulated nitrite release by comparison to these parameters in iron loaded macrophages. Co-administration of chloroquine and desferrioxamine normalised the latent activity of NFkappaB to that of control macrophages as well as increasing LPS-stimulated NO release towards control values. However, DFO alone did not have any significant effect upon either of these parameters. Such results may have important relevance for the reduced immune function of iron loaded macrophages isolated from thalassaemia patients receiving chelation therapy and their propensity to increased infection. [less ▲]

Detailed reference viewed: 4 (0 ULg)
Full Text
Peer Reviewed
See detailImportance of post-transcriptional regulation of chemokine genes by oxidative stress.
JOSSE, Claire ULg; Boelaert, J. R.; Best-Belpomme, M. et al

in Biochemical Journal (2001), 360(Pt 2), 321-33

The transcription factor, nuclear factor kappa B (NF-kappa B), is activated by various stimuli including cytokines, radiation, viruses and oxidative stress. Here we show that, although induction with H(2 ... [more ▼]

The transcription factor, nuclear factor kappa B (NF-kappa B), is activated by various stimuli including cytokines, radiation, viruses and oxidative stress. Here we show that, although induction with H(2)O(2) gives rise to NF-kappa B nuclear translocation in both lymphocyte (CEM) and monocyte (U937) cells, it leads only to the production of mRNA species encoding interleukin-8 (IL-8) and macrophage inflammatory protein 1 alpha in U937 cells. Under similar conditions these mRNA species are not observed in CEM cells. With the use of a transient transfection assay of U937 cells transfected with reporter constructs of the IL-8 promoter and subsequently treated with H(2)O(2), we show that (1) IL-8-promoter-driven transcription is stimulated in both U937 and CEM cells and (2) the NF-kappa B site is crucial for activation because its deletion abolishes activation by H(2)O(2). The production of IL-8 mRNA in U937 cells is inhibited by the NF-kappa B inhibitors clasto-lactacystin-beta-lactone and E-64D (l-3-trans-ethoxycarbonyloxirane-2-carbonyl-L-leucine-3-methyl amide) but requires protein synthesis de novo. Moreover, inhibition of the p38 mitogen-activated protein kinase also decreases the IL-8 mRNA up-regulation mediated by H(2)O(2). Taken together, these results show the importance of post-transcriptional events controlled by a p38-dependent pathway in the production of IL-8 mRNA in U937. The much lower activation of p38 in CEM cells in response to H(2)O(2) could explain the lack of stabilization of IL-8 mRNA in these cells. [less ▲]

Detailed reference viewed: 10 (0 ULg)
Full Text
Peer Reviewed
See detailImpairment of mitochondrial functions abolishes NF-kappaB activation by an oxidative stress
Josse, Claire ULg; Legrand-Poels, Sylvie ULg; Piret, Bernard et al

in Free Radical Biology & Medicine (1998)

Detailed reference viewed: 5 (0 ULg)