References of "Jehin, Emmanuel"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailThe small binary asteroid (939) Isberga
Carry, B.; Matter, A.; Scheirich, P. et al

in Icarus (2015), 248

In understanding the composition and internal structure of asteroids, their density is perhaps the most diagnostic quantity. We aim here at characterizing the surface composition, mutual orbit, size, mass ... [more ▼]

In understanding the composition and internal structure of asteroids, their density is perhaps the most diagnostic quantity. We aim here at characterizing the surface composition, mutual orbit, size, mass, and density of the small main-belt binary asteroid (939) Isberga. For that, we conduct a suite of multi-technique observations, including optical lightcurves over many epochs, near-infrared spectroscopy, and interferometry in the thermal infrared. We develop a simple geometric model of binary systems to analyze the interferometric data in combination with the results of the lightcurve modeling. From spectroscopy, we classify Ibserga as a Sq-type asteroid, consistent with the albedo of 0.14<SUB>-0.06</SUB><SUP>+0.09</SUP> (all uncertainties are reported as 3-σ range) we determine (average albedo of S-types is 0.197 ± 0.153, see Pravec et al. (Pravec et al. [2012]. Icarus 221, 365-387). Lightcurve analysis reveals that the mutual orbit has a period of 26.6304 ± 0.0001 h, is close to circular (eccentricity lower than 0.1), and has pole coordinates within 7° of (225°, +86°) in Ecliptic J2000, implying a low obliquity of 1.5<SUB>-1.5</SUB><SUP>+6.0</SUP> deg . The combined analysis of lightcurves and interferometric data allows us to determine the dimension of the system and we find volume-equivalent diameters of 12.4<SUB>-1.2</SUB><SUP>+2.5</SUP> km and 3.6<SUB>-0.3</SUB><SUP>+0.7</SUP> km for Isberga and its satellite, circling each other on a 33 km wide orbit. Their density is assumed equal and found to be 2.91<SUB>-2.01</SUB><SUP>+1.72</SUP> gcm<SUP>-3</SUP> , lower than that of the associated ordinary chondrite meteorites, suggesting the presence of some macroporosity, but typical of S-types of the same size range (Carry [2012]. Planet. Space Sci. 73, 98-118). The present study is the first direct measurement of the size of a small main-belt binary. Although the interferometric observations of Isberga are at the edge of MIDI capabilities, the method described here is applicable to others suites of instruments (e.g., LBT, ALMA). [less ▲]

Detailed reference viewed: 16 (1 ULg)
Full Text
Peer Reviewed
See detailEvidence that Pluto's atmosphere does not collapse from occultations including the 2013 May 04 event
Olkin, C. B.; Young, L. A.; Borncamp, D. et al

in Icarus (2015), 246

Combining stellar occultation observations probing Pluto's atmosphere from 1988 to 2013, and models of energy balance between Pluto's surface and atmosphere, we find the preferred models are consistent ... [more ▼]

Combining stellar occultation observations probing Pluto's atmosphere from 1988 to 2013, and models of energy balance between Pluto's surface and atmosphere, we find the preferred models are consistent with Pluto retaining a collisional atmosphere throughout its 248-year orbit. The occultation results show an increasing atmospheric pressure with time in the current epoch, a trend present only in models with a high thermal inertia and a permanent N<SUB>2</SUB> ice cap at Pluto's north rotational pole. [less ▲]

Detailed reference viewed: 6 (0 ULg)
Full Text
Peer Reviewed
See detailThe binary near-Earth Asteroid (175706) 1996 FG3 - An observational constraint on its orbital evolution
Scheirich, P.; Pravec, P.; Jacobson, S. A. et al

in Icarus (2015), 245

Using our photometric observations taken between April 1996 and January 2013 and other published data, we derived properties of the binary near-Earth Asteroid (175706) 1996 FG<SUB>3</SUB> including new ... [more ▼]

Using our photometric observations taken between April 1996 and January 2013 and other published data, we derived properties of the binary near-Earth Asteroid (175706) 1996 FG<SUB>3</SUB> including new measurements constraining evolution of the mutual orbit with potential consequences for the entire binary asteroid population. We also refined previously determined values of parameters of both components, making 1996 FG<SUB>3</SUB> one of the most well understood binary asteroid systems. With our 17-year long dataset, we determined the orbital vector with a substantially greater accuracy than before and we also placed constraints on a stability of the orbit. Specifically, the ecliptic longitude and latitude of the orbital pole are 266 ° and - 83 ° , respectively, with the mean radius of the uncertainty area of 4 ° , and the orbital period is 16.1508 ± 0.0002 h (all quoted uncertainties correspond to 3σ). We looked for a quadratic drift of the mean anomaly of the satellite and obtained a value of 0.04 ± 0.20 deg /yr<SUP>2</SUP> , i.e., consistent with zero. The drift is substantially lower than predicted by the pure binary YORP (BYORP) theory of McMahon and Scheeres (McMahon, J., Scheeres, D. [2010]. Icarus 209, 494-509) and it is consistent with the tigidity and quality factor of μQ = 1.3 ×10<SUP>7</SUP> Pa using the theory that assumes an elastic response of the asteroid material to the tidal forces. This very low value indicates that the primary of 1996 FG<SUB>3</SUB> is a 'rubble pile', and it also calls for a re-thinking of the tidal energy dissipation in close asteroid binary systems. [less ▲]

Detailed reference viewed: 11 (0 ULg)
Full Text
Peer Reviewed
See detailDust from Comet 209P/LINEAR during its 2014 Return: Parent Body of a New Meteor Shower, the May Camelopardalids
Ishiguro, Masateru; Kuroda, Daisuke; Hanayama, Hidekazu et al

in The Astrophysical Journal Letters (2015), 798

We report a new observation of the Jupiter family comet 209P/LINEAR during its 2014 return. The comet is recognized as a dust source of a new meteor shower, the May Camelopardalids. 209P/LINEAR was ... [more ▼]

We report a new observation of the Jupiter family comet 209P/LINEAR during its 2014 return. The comet is recognized as a dust source of a new meteor shower, the May Camelopardalids. 209P/LINEAR was apparently inactive at a heliocentric distance r<SUB>h</SUB> = 1.6 AU and showed weak activity at r<SUB>h</SUB> <= 1.4 AU. We found an active region of <0.001% of the entire nuclear surface during the comet's dormant phase. An edge-on image suggests that particles up to 1 cm in size (with an uncertainty of factor 3-5) were ejected following a differential power-law size distribution with index q = –3.25 ± 0.10. We derived a mass-loss rate of 2-10 kg s<SUP>–1</SUP> during the active phase and a total mass of ≈5 × 10<SUP>7</SUP> kg during the 2014 return. The ejection terminal velocity of millimeter- to centimeter-sized particles was 1-4 m s<SUP>–1</SUP>, which is comparable to the escape velocity from the nucleus (1.4 m s<SUP>–1</SUP>). These results imply that such large meteoric particles marginally escaped from the highly dormant comet nucleus via the gas drag force only within a few months of the perihelion passage. [less ▲]

Detailed reference viewed: 11 (1 ULg)
Full Text
Peer Reviewed
See detailMonte Carlo Simulation of Metastable Oxygen Photochemistry in Cometary Atmospheres
Bisikalo, D. V.; Shematovich, V. I.; Gérard, Jean-Claude ULg et al

in The Astrophysical Journal (2015), 798

Cometary atmospheres are produced by the outgassing of material, mainly H[SUB]2[/SUB]O, CO, and CO[SUB]2[/SUB] from the nucleus of the comet under the energy input from the Sun. Subsequent photochemical ... [more ▼]

Cometary atmospheres are produced by the outgassing of material, mainly H[SUB]2[/SUB]O, CO, and CO[SUB]2[/SUB] from the nucleus of the comet under the energy input from the Sun. Subsequent photochemical processes lead to the production of other species generally absent from the nucleus, such as OH. Although all comets are different, they all have a highly rarefied atmosphere, which is an ideal environment for nonthermal photochemical processes to take place and influence the detailed state of the atmosphere. We develop a Monte Carlo model of the coma photochemistry. We compute the energy distribution functions (EDF) of the metastable O([SUP]1[/SUP]D) and O([SUP]1[/SUP]S) species and obtain the red (630 nm) and green (557.7 nm) spectral line shapes of the full coma, consistent with the computed EDFs and the expansion velocity. We show that both species have a severely non-Maxwellian EDF, that results in broad spectral lines and the suprathermal broadening dominates due to the expansion motion. We apply our model to the atmosphere of comet C/1996 B2 (Hyakutake) and 103P/Hartley 2. The computed width of the green line, expressed in terms of speed, is lower than that of the red line. This result is comparable to previous theoretical analyses, but in disagreement with observations. We explain that the spectral line shape does not only depend on the exothermicity of the photochemical production mechanisms, but also on thermalization, due to elastic collisions, reducing the width of the emission line coming from the O([SUP]1[/SUP]D) level, which has a longer lifetime. [less ▲]

Detailed reference viewed: 10 (3 ULg)
Full Text
Peer Reviewed
See detailForbidden oxygen lines at various nucleocentric distances in comets
Decock, Alice ULg; Jehin, Emmanuel ULg; Rousselot, P. et al

in Astronomy and Astrophysics (2015), 573

Aims: We study the formation of the [OI] lines - that is, 5577.339 Å (the green line), 6300.304 Å and 6363.776 Å (the two red lines) - in the coma of comets and determine the parent species of the oxygen ... [more ▼]

Aims: We study the formation of the [OI] lines - that is, 5577.339 Å (the green line), 6300.304 Å and 6363.776 Å (the two red lines) - in the coma of comets and determine the parent species of the oxygen atoms using the ratio of the green-to-red-doublet emission intensity, I[SUB]5577[/SUB]/(I[SUB]6300[/SUB] + I[SUB]6364[/SUB]), (hereafter the G/R ratio) and the line velocity widths. <BR /> Methods: We acquired high-resolution spectroscopic observations at the ESO Very Large Telescope of comets C/2002 T7 (LINEAR), 73P-C/Schwassmann-Wachmann 3, 8P/Tuttle, and 103P/Hartley 2 when they were close to Earth (<0.6 au). Using the observed spectra, which have a high spatial resolution (<60 km/pixel), we determined the intensities and widths of the three [OI] lines. We spatially extracted the spectra to achieve the best possible resolution of about 1-2'', that is, nucleocentric projected distances of 100 to 400 km depending on the geocentric distance of the comet. We decontaminated the [OI] green line from C[SUB]2[/SUB] lines blends that we identified. <BR /> Results: The observed G/R ratio in all four comets varies as a function of nucleocentric projected distance (between ~0.25 to ~0.05 within 1000 km). This is mainly due to the collisional quenching of O([SUP]1[/SUP]S) and O([SUP]1[/SUP]D) by water molecules in the inner coma. The observed green emission line width is about 2.5 km s[SUP]-1[/SUP] and decreases as the distance from the nucleus increases, which can be explained by the varying contribution of CO[SUB]2[/SUB] to the O([SUP]1[/SUP]S) production in the innermost coma. The photodissociation of CO[SUB]2[/SUB] molecules seem to produce O([SUP]1[/SUP]S) closer to the nucleus, while the water molecule forms all the O([SUP]1[/SUP]S) and O([SUP]1[/SUP]D) atoms beyond 10[SUP]3[/SUP] km. Thus we conclude that the main parent species producing O([SUP]1[/SUP]S) and O([SUP]1[/SUP]D) in the inner coma is not always the same. The observations have been interpreted in the framework of the previously described coupled-chemistry-emission model, and the upper limits of the relative abundances of CO[SUB]2[/SUB] were derived from the observed G/R ratios. Measuring the [OI] lines might provide a new way to determine the CO[SUB]2[/SUB] relative abundance in comets. Based on observations made with ESO Telescope at the La Silla Paranal Observatory under programs ID 073.C-0525, 277.C-5016, 080.C-0615 and 086.C-0958.Tables 3 and 4 are available in electronic form at <A href="http://www.aanda.org/10.1051/0004-6361/201424403/olm">http://www.aanda.org</A> [less ▲]

Detailed reference viewed: 6 (0 ULg)
Full Text
Peer Reviewed
See detailWASP-94 A and B planets: hot-Jupiter cousins in a twin-star system
Neveu-VanMalle, M.; Queloz, D.; Anderson, D. R. et al

in Astronomy and Astrophysics (2014), 572

We report the discovery of two hot-Jupiter planets, each orbiting one of the stars of a wide binary system. <ASTROBJ>WASP-94A</ASTROBJ> (<ASTROBJ>2MASS 20550794-3408079</ASTROBJ>) is an F8 type star ... [more ▼]

We report the discovery of two hot-Jupiter planets, each orbiting one of the stars of a wide binary system. <ASTROBJ>WASP-94A</ASTROBJ> (<ASTROBJ>2MASS 20550794-3408079</ASTROBJ>) is an F8 type star hosting a transiting planet with a radius of 1.72 ± 0.06 R<SUB>Jup</SUB>, a mass of 0.452 ± 0.034 M<SUB>Jup</SUB>, and an orbital period of 3.95 days. The Rossiter-McLaughlin effect is clearly detected, and the measured projected spin-orbit angle indicates that the planet occupies a retrograde orbit. <ASTROBJ>WASP-94B</ASTROBJ> (<ASTROBJ>2MASS 20550915-3408078</ASTROBJ>) is an F9 stellar companion at an angular separation of 15'' (projected separation 2700 au), hosting a gas giant with a minimum mass of 0.618 ± 0.028 M<SUB>Jup</SUB> with a period of 2.008 days, detected by Doppler measurements. The orbital planes of the two planets are inclined relative to each other, indicating that at least one of them is inclined relative to the plane of the stellar binary. These hot Jupiters in a binary system bring new insights into the formation of close-in giant planets and the role of stellar multiplicity. The radial-velocity and photometric data used for this work are only available at the CDS via anonymous ftp to <A href="http://cdsarc.u-strasbg.fr">http://cdsarc.u-strasbg.fr</A> (ftp://130.79.128.5) or via <A href="http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/572/A49">http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/572/A49</A> [less ▲]

Detailed reference viewed: 10 (1 ULg)
Full Text
Peer Reviewed
See detailThree sub-Jupiter-mass planets: WASP-69b & WASP-84b transit active K dwarfs and WASP-70Ab transits the evolved primary of a G4+K3 binary
Anderson, D. R.; Collier Cameron, A.; Delrez, Laetitia ULg et al

in Monthly Notices of the Royal Astronomical Society (2014), 445(2),

We report the discovery of the transiting exoplanets WASP-69b, WASP-70Ab and WASP-84b, each of which orbits a bright star (V ˜ 10). WASP-69b is a bloated Saturn-mass planet (0.26 MJup, 1.06 RJup) in a 3 ... [more ▼]

We report the discovery of the transiting exoplanets WASP-69b, WASP-70Ab and WASP-84b, each of which orbits a bright star (V ˜ 10). WASP-69b is a bloated Saturn-mass planet (0.26 MJup, 1.06 RJup) in a 3.868-d period around an active, ˜1-Gyr, mid-K dwarf. ROSAT detected X-rays 60±27 arcsec from WASP-69. If the star is the source then the planet could be undergoing mass-loss at a rate of ˜1012 g s-1. This is one to two orders of magnitude higher than the evaporation rate estimated for HD 209458b and HD 189733b, both of which have exhibited anomalously large Lyman alpha absorption during transit. WASP-70Ab is a sub-Jupiter-mass planet (0.59 MJup, 1.16 RJup) in a 3.713-d orbit around the primary of a spatially resolved, 9-10-Gyr, G4+K3 binary, with a separation of 3.3 arcsec (>=800 au). WASP-84b is a sub-Jupiter-mass planet (0.69 MJup, 0.94 RJup) in an 8.523-d orbit around an active, ˜1-Gyr, early-K dwarf. Of the transiting planets discovered from the ground to date, WASP-84b has the third-longest period. For the active stars WASP-69 and WASP-84, we pre-whitened the radial velocities using a low-order harmonic series. We found that this reduced the residual scatter more than did the oft-used method of pre-whitening with a fit between residual radial velocity and bisector span. The system parameters were essentially unaffected by pre-whitening. [less ▲]

Detailed reference viewed: 13 (1 ULg)
Full Text
See detailHigh-Dispersion Spectroscopic Observations of Comet C/2012 S1 (ISON) with the Subaru Telescope
Shinnaka, Yoshiharu; Kawakita, Hideyo; Nagashima, Masayoshi et al

in Bulletin of the American Astronomical Society (2014, November 01), 46

Comet C/2012 S1 (ISON) was one of the Oort cloud comets and dynamically new. This comet was broken at its perihelion passage on UT 2013 November 28.1 (at Rh ~ 17 solar radius). We observed the comet C ... [more ▼]

Comet C/2012 S1 (ISON) was one of the Oort cloud comets and dynamically new. This comet was broken at its perihelion passage on UT 2013 November 28.1 (at Rh ~ 17 solar radius). We observed the comet C/2012 S1 (ISON) on UT 2013 November 15 with the High Dispersion Spectrograph (HDS) mounted on the Subaru Telescope atop Mauna Kea, Hawaii. Its heliocentric and geocentric distances were 0.601 and 0.898 AU, respectively. We selected the slit size of 0”.5 x 9”.0 on the sky to achieve the spectral resolution of R = 72,000 from 550 to 830 nm. The total exposure time of comet C/2012 S1 (ISON) was 1200 seconds. We detected many emission lines caused from radicals (e.g., CN, C2, NH2), ions (H2O+), atoms ([OI] and Na I) and also many unidentified lines in the spectra. We report the (1) the ortho-to-para abundance ratios (OPRs) of water and ammonia estimated from the high-dispersion spectra of H2O+ and NH2, (2) the green-to-red line ratio of forbidden oxygen emissions, (3) the isotopic ratios of C2 (the carbon isotopic ratio from Swan band) and CN (the carbon and nitrogen isotopic ratios from red band), (4) the sodium-to-continuum ratio of comet C/2012 S1 (ISON). </PRE></BODY></HTML> [less ▲]

Detailed reference viewed: 15 (0 ULg)
Full Text
Peer Reviewed
See detailInstrumental methods for professional and amateur collaborations in planetary astronomy
Mousis, O.; Hueso, R.; Beaulieu, J.-P. et al

in Experimental Astronomy (2014), 38

Amateur contributions to professional publications have increased exponentially over the last decades in the field of planetary astronomy. Here we review the different domains of the field in which ... [more ▼]

Amateur contributions to professional publications have increased exponentially over the last decades in the field of planetary astronomy. Here we review the different domains of the field in which collaborations between professional and amateur astronomers are effective and regularly lead to scientific publications.We discuss the instruments, detectors, software and methodologies typically used by amateur astronomers to collect the scientific data in the different domains of interest. Amateur contributions to the monitoring of planets and interplanetary matter, characterization of asteroids and comets, as well as the determination of the physical properties of Kuiper Belt Objects and exoplanets are discussed. [less ▲]

Detailed reference viewed: 11 (0 ULg)
Full Text
See detailThe TRAPPIST comet survey in 2014
Jehin, Emmanuel ULg; Opitom, Cyrielle ULg; Manfroid, Jean ULg et al

in Bulletin of the American Astronomical Society (2014, November 01), 46

TRAPPIST (TRAnsiting Planets and PlanetesImals Small Telescope) is a 60-cm robotic telescope that has been installed in June 2010 at the ESO La Silla Observatory [1]. Operated from Liège (Belgium) it is ... [more ▼]

TRAPPIST (TRAnsiting Planets and PlanetesImals Small Telescope) is a 60-cm robotic telescope that has been installed in June 2010 at the ESO La Silla Observatory [1]. Operated from Liège (Belgium) it is devoted to the detection and characterisation of exoplanets and to the study of comets and other small bodies in the Solar System. A set of narrowband cometary filters designed by the NASA for the Hale-Bopp Observing Campaign [2] is permanently mounted on the telescope along with classic Johnson-Cousins filters. We describe here the hardware and the goals of the project. For relatively bright comets (V < 12) we measure several times a week the gaseous production rates (using a Haser model) and the spatial distribution of several species among which OH, NH, CN, C2 and C3 as well as ions like CO+. The dust production rates (Afrho) and color of the dust aredetermined through four dust continuum bands from the UV to the red (UC, BC, GC, RC filters). We will present the dust and gas production rates of the brightest comets observed in 2014: C/2012 K1 (PANSTARRS), C/2014 E2 (Jacques), C/2013 A1 (Siding Springs) and C/2013 V5 (Oukaimeden). Each of these comets have been observed at least once a week for several weeks to several months. Light curves with respect to the heliocentric distance will be presented and discussed. [1] Jehin et al., The Messenger, 145, 2-6, 2011.[2] Farnham et al., Icarus, 147, 180-204, 2000. [less ▲]

Detailed reference viewed: 20 (1 ULg)
Full Text
See detailTRAPPIST monitoring of comet C/2013 A1 (Siding Spring)
Opitom, Cyrielle ULg; Jehin, Emmanuel ULg; Manfroid, Jean ULg et al

in Bulletin of the American Astronomical Society (2014, November 01), 46

C/2013 A1 (Siding Spring) is a long period comet discovered by Robert H McNaught at Siding Spring Observatory in Australia on January 3, 2013 at 7.2 au from the Sun. This comet will make a close encounter ... [more ▼]

C/2013 A1 (Siding Spring) is a long period comet discovered by Robert H McNaught at Siding Spring Observatory in Australia on January 3, 2013 at 7.2 au from the Sun. This comet will make a close encounter with Mars on October 19, 2014. At this occasion the comet will be extensively observed both from Earth and from several orbiters around Mars.On September 20, 2013 when the comet was around 5 au from the Sun, we started a monitoring with the TRAPPIST robotic telescope installed at La Silla observatory [1]. A set of narrowband cometary filters designed by the NASA for the Hale-Bopp Observing Campaign [2] is permanently mounted on the telescope along with classic Johnson-Cousins B, V, Rc, and Ic filters.We observed the comet continuously at least once a week from September 20, 2013 to April 6, 2014 with broad band filters. We then recovered the comet on May 20. At this time we could detect the gas and started the observations with narrow band filters until early November, covering the close approach to Mars and the perihelion passage.We present here our first results about comet Siding Springs. From the images in the broad band filters and in the dust continuum filters we derived A(θ)fρ values [3] and studied the evolution of the comet activity with the heliocentric distance from September 20, 2013 to early November 2014. We could also detect gas since May 20, 2014. We thus derived gas production rates using a Haser model [4]. We present the evolution of gas production rates and gas production rates ratios with the heliocentric distance.Finally, we discuss the dust and gas coma morphology. [less ▲]

Detailed reference viewed: 21 (3 ULg)
Full Text
Peer Reviewed
See detailWASP-104b and WASP-106b: two transiting hot Jupiters in 1.75-day and 9.3-day orbits
Smith, A. M. S.; Anderson, D. R.; Armstrong, D. J. et al

in Astronomy and Astrophysics (2014)

We report the discovery from the WASP survey of two exoplanetary systems, each consisting of a Jupiter-sized planet transiting an 11th magnitude (V) main-sequence star. WASP-104b orbits its star in 1.75 d ... [more ▼]

We report the discovery from the WASP survey of two exoplanetary systems, each consisting of a Jupiter-sized planet transiting an 11th magnitude (V) main-sequence star. WASP-104b orbits its star in 1.75 d, whereas WASP-106b has the fourth-longest orbital period of any planet discovered by means of transits observed from the ground, orbiting every 9.29 d. Each planet is more massive than Jupiter (WASP-104b has a mass of 1.27±0.05 MJup, while WASP-106b has a mass of 1.93±0.08 MJup). Both planets are just slightly larger than Jupiter, with radii of 1.14±0.04 and 1.09±0.04 RJup for WASP-104 and WASP-106 respectively. No significant orbital eccentricity is detected in either system, and while this is not surprising in the case of the short-period WASP-104b, it is interesting in the case of WASP-106b, because many otherwise similar planets are known to have eccentric orbits. [less ▲]

Detailed reference viewed: 12 (2 ULg)
Full Text
Peer Reviewed
See detailWASP-117b: a 10-day-period Saturn in an eccentric and misaligned orbit
Lendl, Monika ULg; Triaud, A. H. M. J.; Anderson, D. R. et al

in Astronomy and Astrophysics (2014), 568

We report the discovery of WASP-117b, the first planet with a period beyond 10 days found by the WASP survey. The planet has a mass of M_p = 0.2755 (+/-0.0090) M_jup, a radius of R_p = 1.021 (-0.065 +0 ... [more ▼]

We report the discovery of WASP-117b, the first planet with a period beyond 10 days found by the WASP survey. The planet has a mass of M_p = 0.2755 (+/-0.0090) M_jup, a radius of R_p = 1.021 (-0.065 +0.076) R_jup and is in an eccentric (e = 0.302 +/-0.023), 10.02165 +/- 0.00055 d orbit around a main-sequence F9 star. The host star's brightness (V=10.15 mag) makes WASP-117 a good target for follow-up observations, and with a planetary equilibrium temperature of T_eq = 1024 (-26 +30) K and a low planetary density (rho_p = 0.259 (-0.048 +0.054) rho_jup) it is one of the best targets for transmission spectroscopy among planets with periods around 10 days. From a measurement of the Rossiter-McLaughlin effect, we infer a projected angle between the planetary orbit and stellar spin axes of beta = -44 (+/-11) deg, and we further derive an orbital obliquity of psi = 69.5 (+3.6 -3.1) deg. Owing to the large orbital separation, tidal forces causing orbital circularization and realignment of the planetary orbit with the stellar plane are weak, having had little impact on the planetary orbit over the system lifetime. WASP-117b joins a small sample of transiting giant planets with well characterized orbits at periods above ~8 days. [less ▲]

Detailed reference viewed: 10 (1 ULg)
See detailGround-based transmission spectrum of WASP-80 b, a gas giant transiting an M-dwarf
Delrez, Laetitia ULg; Gillon, Michaël ULg; Lendl, Monika ULg et al

Poster (2014, June 09)

We present here some results from our ground-­based multi-­object spectroscopy program aiming to measure the transmission spectrum of the transiting hot Jupiter WASP-80b using the VLT/FORS2 instrument ... [more ▼]

We present here some results from our ground-­based multi-­object spectroscopy program aiming to measure the transmission spectrum of the transiting hot Jupiter WASP-80b using the VLT/FORS2 instrument. WASP-­80b is a unique object as it is the only known specimen of gas giant orbiting an M-dwarf that is bright enough for high SNR follow-­up measurements. Due to the nature of its host star, this hot Jupiter is actually more `warm' than `hot', with an estimated equilibrium temperature of only 800K. It is thus a prime target to improve our understanding of giant exoplanet atmospheres in this temperature range. [less ▲]

Detailed reference viewed: 8 (0 ULg)
Full Text
Peer Reviewed
See detailExtremely Organic-rich Coma of Comet C/2010 G2 (Hill) during its Outburst in 2012
Kawakita, Hideyo; Dello Russo, Neil; Vervack, Ron et al

in Astrophysical Journal (2014), 788

We performed high-dispersion near-infrared spectroscopic observations of comet C/2010 G2 (Hill) at 2.5 AU from the Sun using NIRSPEC (R ≈ 25,000) at the Keck II Telescope on UT 2012 January 9 and 10 ... [more ▼]

We performed high-dispersion near-infrared spectroscopic observations of comet C/2010 G2 (Hill) at 2.5 AU from the Sun using NIRSPEC (R ≈ 25,000) at the Keck II Telescope on UT 2012 January 9 and 10, about a week after an outburst had occurred. Over the two nights of our observations, prominent emission lines of CH[SUB]4[/SUB] and C[SUB]2[/SUB]H[SUB]6[/SUB], along with weaker emission lines of H[SUB]2[/SUB]O, HCN, CH[SUB]3[/SUB]OH, and CO were detected. The gas production rate of CO was comparable to that of H[SUB]2[/SUB]O during the outburst. The mixing ratios of CO, HCN, CH[SUB]4[/SUB], C[SUB]2[/SUB]H[SUB]6[/SUB], and CH[SUB]3[/SUB]OH with respect to H[SUB]2[/SUB]O were higher than those for normal comets by a factor of five or more. The enrichment of CO and CH[SUB]4[/SUB] in comet Hill suggests that the sublimation of these hypervolatiles sustained the outburst of the comet. Some fraction of water in the inner coma might exist as icy grains that were likely ejected from nucleus by the sublimation of hypervolatiles. Mixing ratios of volatiles in comet Hill are indicative of the interstellar heritage without significant alteration in the solar nebula. [less ▲]

Detailed reference viewed: 10 (0 ULg)
Full Text
See detailThe binary near-Earth asteroid (175706) 1996 FG3 - An observational constraint on its orbital stability
Scheirich, P.; Pravec, P.; Jacobson, S. A. et al

E-print/Working paper (2014)

Using our photometric observations taken between April 1996 and January 2013 and other published data, we derive properties of the binary near-Earth asteroid (175706) 1996 FG3 including new measurements ... [more ▼]

Using our photometric observations taken between April 1996 and January 2013 and other published data, we derive properties of the binary near-Earth asteroid (175706) 1996 FG3 including new measurements constraining evolution of the mutual orbit with potential consequences for the entire binary asteroid population. We also refined previously determined values of parameters of both components, making 1996 FG3 one of the most well understood binary asteroid systems. We determined the orbital vector with a substantially greater accuracy than before and we also placed constraints on a stability of the orbit. Specifically, the ecliptic longitude and latitude of the orbital pole are 266{\deg} and -83{\deg}, respectively, with the mean radius of the uncertainty area of 4{\deg}, and the orbital period is 16.1508 +\- 0.0002 h (all uncertainties correspond to 3sigma). We looked for a quadratic drift of the mean anomaly of the satellite and obtained a value of 0.04 +\- 0.20 deg/yr^2, i.e., consistent with zero. The drift is substantially lower than predicted by the pure binary YORP (BYORP) theory of McMahon and Scheeres (McMahon, J., Scheeres, D. [2010]. Icarus 209, 494-509) and it is consistent with the theory of an equilibrium between BYORP and tidal torques for synchronous binary asteroids as proposed by Jacobson and Scheeres (Jacobson, S.A., Scheeres, D. [2011]. ApJ Letters, 736, L19). Based on the assumption of equilibrium, we derived a ratio of the quality factor and tidal Love number of Q/k = 2.4 x 10^5 uncertain by a factor of five. We also derived a product of the rigidity and quality factor of mu Q = 1.3 x 10^7 Pa using the theory that assumes an elastic response of the asteroid material to the tidal forces. This very low value indicates that the primary of 1996 FG3 is a 'rubble pile', and it also calls for a re-thinking of the tidal energy dissipation in close asteroid binary systems. [less ▲]

Detailed reference viewed: 11 (2 ULg)
Full Text
Peer Reviewed
See detailA window on exoplanet dynamical histories: Rossiter-McLaughlin observations of WASP-13b and WASP-32b
Brothwell, R.D.; Watson, C.A.; Hébrard, G. et al

in Monthly Notices of the Royal Astronomical Society (2014), 440(4), 3392-3401

We present Rossiter-McLaughlin observations of WASP-13b and WASP-32b and determine the sky-projected angle between the normal of the planetary orbit and the stellar rotation axis (lambda). WASP-13b and ... [more ▼]

We present Rossiter-McLaughlin observations of WASP-13b and WASP-32b and determine the sky-projected angle between the normal of the planetary orbit and the stellar rotation axis (lambda). WASP-13b and WASP-32b both have prograde orbits and are consistent with alignment with measured sky-projected angles of lambda =8°^{+13}_{-12} and lambda =-2°^{+17}_{-19}, respectively. Both WASP-13 and WASP-32 have Teff < 6250 K, and therefore, these systems support the general trend that aligned planetary systems are preferentially found orbiting cool host stars. A Lomb-Scargle periodogram analysis was carried out on archival SuperWASP data for both systems. A statistically significant stellar rotation period detection (above 99.9 per cent confidence) was identified for the WASP-32 system with Prot = 11.6 ± 1.0 days. This rotation period is in agreement with the predicted stellar rotation period calculated from the stellar radius, R*, and vsin i if a stellar inclination of i* = 90° is assumed. With the determined rotation period, the true 3D angle between the stellar rotation axis and the planetary orbit, psi, was found to be psi = 11° ± 14°. We conclude with a discussion on the alignment of systems around cool host stars with Teff < 6150 K by calculating the tidal dissipation time-scale. We find that systems with short tidal dissipation time-scales are preferentially aligned and systems with long tidal dissipation time-scales have a broad range of obliquities. [less ▲]

Detailed reference viewed: 11 (1 ULg)
Full Text
Peer Reviewed
See detailTransiting hot Jupiters from WASP-South, Euler and TRAPPIST: WASP-95b to WASP-101b
Hellier, Coel; Anderson, D. R.; Collier Cameron, A. et al

in Monthly Notices of the Royal Astronomical Society (2014)

We report the discovery of the transiting exoplanets WASP-95b, WASP-96b, WASP-97b, WASP-98b, WASP-99b, WASP-100b and WASP-101b. All are hot Jupiters with orbital periods in the range 2.1-5.7 d, masses of ... [more ▼]

We report the discovery of the transiting exoplanets WASP-95b, WASP-96b, WASP-97b, WASP-98b, WASP-99b, WASP-100b and WASP-101b. All are hot Jupiters with orbital periods in the range 2.1-5.7 d, masses of 0.5-2.8 MJup and radii of 1.1-1.4 RJup. The orbits of all the planets are compatible with zero eccentricity. WASP-99b produces the shallowest transit yet found by WASP-South, at 0.4 per cent. The host stars are of spectral type F2-G8. Five have metallicities of [Fe/H] from -0.03 to +0.23, while WASP-98 has a metallicity of -0.60, exceptionally low for a star with a transiting exoplanet. Five of the host stars are brighter than V = 10.8, which significantly extends the number of bright transiting systems available for follow-up studies. WASP-95 shows a possible rotational modulation at a period of 20.7 d. We discuss the completeness of WASP survey techniques by comparing to the HATnet project. [less ▲]

Detailed reference viewed: 12 (0 ULg)