References of "Jamin, Pierre"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailComparison of temperature from DTS and ERT with direct measurements during heat tracer experiments in heterogeneous aquifers
Nguyen, Frédéric ULg; Hermans, Thomas ULg; Jamin, Pierre ULg et al

Conference (2016, September 27)

Geothermal field characterization and heat tracer experiments often rely on scarce temperature data collected in boreholes. Electrical resistivity tomography (ERT) and distributed temperature sensing (DTS ... [more ▼]

Geothermal field characterization and heat tracer experiments often rely on scarce temperature data collected in boreholes. Electrical resistivity tomography (ERT) and distributed temperature sensing (DTS) have the potential to provide spatial information on temperature changes in the subsurface. In this contribution, we show how DTS and ERT have been used to investigate the heterogeneity of a heterogeneous aquifer during a heat tracing experiment under forced gradient conditions. Optic fibers were installed in the heat injection well and in two piezometers intersecting the main flow directions at 8 m from the injection well. These piezometers were also equipped with ERT. The DTS measurement in the injection well clearly shows the two-layer nature of the aquifer. After the end of injection, the temperature in the bottom part of the well decreases faster than in the upper part due to the higher water fluxes. Those results are confirmed by DTS measurements in natural flow conditions during a heating wire test. DTS and ERT in the cross-panel both show the vertical and lateral heterogeneity of the aquifer. Temperatures only increase significantly in the bottom part of the aquifer where advection is predominant. However, strong differences are observed laterally. ERT additionally shows that the hot plume is divided in two main flow paths, which is confirmed by direct temperature measurements. The comparison of DTS and ERT shows that one of the well is suffering from water mixing. Indeed, temperature from DTS are homogeneous over the whole tichkness of the aquifer, whereas ERT temperature, less affected by local variations, are varying. Our study demonstrate the value of spatially distributed measurements for the monitoring of heat tracer experiment and highligths the issue of multilevel sampling. The detailed temperature measurements can be subsequently used in hydrogeological model to better estimates heat flow and transport parameters. [less ▲]

Detailed reference viewed: 23 (5 ULg)
Full Text
Peer Reviewed
See detailMonitored tracer experiment using the vadose zone experimental setup (VZES) for studying water and pollutant recharge processes in a brownfield
Fernandez de Vera, Natalia ULg; Beaujean, Jean; Jamin, Pierre ULg et al

Conference (2016, July 26)

Contaminant transport characterization in the vadose zone of industrial contaminated sites requires in situ technologies that provide information representative of complex heterogeneous systems. However ... [more ▼]

Contaminant transport characterization in the vadose zone of industrial contaminated sites requires in situ technologies that provide information representative of complex heterogeneous systems. However, finding the appropriate methodology is a challenge, as there is a risk of losing data resolution when capturing the spatial variability of the subsurface. An alternative method is provided by The Vadose Zone Experimental Setup (VZES) which combines surface and cross-borehole geophysical methods with a vadose zone monitoring system (VMS). When geophysical imaging is combined with in-situ hydraulic and chemical information at multiple depths of the vadose zone, detailed characterization of contaminant transport in heterogeneous systems is obtained. The system was installed at an industrial contaminated site in Belgium. A saline tracer infiltration test was performed over a heterogeneous vadose zone composed of backfilled materials underlined by unsaturated fractured chalk. Surface and cross-hole Electrical Resistivity Tomography (ERT) measurements were carried out over a 5 day period, following tracer injection. Results from time-lapse imaging reveal high resistivity variations at 0-0.5m depth, indicating that most of the tracer remained in the upper backfilled deposits. This is coincident with the results from sampled waters across the vadose zone, as no tracer was detected below 0.5m depth. Lower resistivity differences were observed laterally, indicating tracer migration in different directions via preferential flow paths. Lateral migration was found to be dominant over vertical transport in the absence of rain events. Three months after the injection, a geophysical survey was performed and combined with in situ continuous hydraulic and chemical information at multiple depths of the vadose zone. Results from geophysical imaging and water sample analyses indicate vertical movement of the tracer, which reached 4 m depth. Information obtained from continuous measurements of water content reveal that the tracer was transferred via preferential flow. The activation of such flow mechanism occurred as a response to rainfall episodes, resulting in water percolation and tracer transport towards higher depths. The results of the investigations demonstrate that the VZES is an effective method in identifying pathways and mechanisms of transport within a heterogeneous conductivity fields. The implementation of this methodological concept at industrial contaminated sites contributes to improve the development of site conceptual models for soil and groundwater protection and remediation. [less ▲]

Detailed reference viewed: 21 (3 ULg)
Full Text
See detailContinuous monitoring of transient groundwater fluxes using the Finite Volume Point Dilution Method
Jamin, Pierre ULg; Brouyère, Serge ULg

Conference (2016, July)

Groundwater flux is the driving force of solute contaminant dispersion through aquifers. Accurate groundwater flux measurement and monitoring is thus crucial for assessing the fate of contaminants in the ... [more ▼]

Groundwater flux is the driving force of solute contaminant dispersion through aquifers. Accurate groundwater flux measurement and monitoring is thus crucial for assessing the fate of contaminants in the saturated zone. Unfortunately, classical measurement such as pumping or slug tests based on the Darcy’s law and hydraulic gradient may lead to cumulated errors and provide no more than a snapshot measurement only representative of a given time. There is a need for a technique able to perform a continuous monitoring of groundwater fluxes, and moreover in aquifer where rapid changes of groundwater fluxes occur such as aquifers influenced by surface water, by nearby pumping or by fast precipitation recharge. Alternative methods, such as point dilution tracer tests to obtain a direct measurement of local groundwater fluxes, are promising In this study, the Finite Volume Point Dilution Method (FVPDM) was applied to continuously monitor groundwater fluxes of the alluvial aquifer of the River Meuse, in Liège (Belgium). The experimental setup consisted in the monitoring of a transient groundwater fluxes generated by a step pumping test that lasted 40 hours. Two FVPDM were performed simultaneously in two piezometers screened in two different part of the aquifer. Piezometric heads were also monitored in several piezometer located around the pumping well. Next to this original experimental setup, a mathematical solution has been developed to interpret data from FVPDM performed under transient state in order to deduce the continuous evolution of groundwater flux. The experiment demonstrated the ability of the FVPDM for monitoring transient groundwater fluxes, even if the changes of groundwater flux occurs rapidly. The FVPDM turned out to be very sensitive to small changes in groundwater flux. The FVPDM interpretation also showed that the upper part of the aquifer is affected by slower groundwater fluxes than the lower and coarser part. Furthermore, distinct hydraulic behavior were determined between the upper and lower part of the aquifer. This could not have been revealed by conventional pumping tests using only drawdown data for interpretation. The mathematical solution allowed to determine the groundwater flux at every moment of the test even if the FVPDM had not reached the stabilized phase that usually guarantee its good precision. These results illustrate the great interest of the FVPDM method for monitoring of contaminant fluxes in groundwater if coupled with a real time measurement of contaminant concentration. One of the main perspective is to perform a long term (several months) monitoring of groundwater fluxes in an aquifer influenced by river stages variations in order to prove the ability of the FVPDM for continuous long term monitoring and better characterize the exchanges between groundwater and surface water. [less ▲]

Detailed reference viewed: 17 (4 ULg)
Full Text
Peer Reviewed
See detailHeat tracer test in an alluvial aquifer: field experiment and inverse modelling
Klepikova, Maria; Wildemeersch, Samuel; Hermans, Thomas ULg et al

in Journal of Hydrology (2016), 540

Using heat as an active tracer for aquifer characterization is a topic of increasing interest. In this study, we investigate the potential of using heat tracer tests for characterization of a shallow ... [more ▼]

Using heat as an active tracer for aquifer characterization is a topic of increasing interest. In this study, we investigate the potential of using heat tracer tests for characterization of a shallow alluvial aquifer. A thermal tracer test was conducted in the alluvial aquifer of the Meuse River, Belgium. The tracing experiment consisted in simultaneously injecting heated water and a dye tracer in an injection well and monitoring the evolution of groundwater temperature and tracer concentration in the pumping well and in measurement intervals. To get insights in the 3D characteristics of the heat transport mechanisms, temperature data from a large number of observation wells closely spaced along three transects were used. Temperature breakthrough curves in observation wells are contrasted with what would be expected in an ideal layered aquifer. They reveal strongly unequal lateral and vertical components of the transport mechanisms. The observed complex behavior of the heat plume is explained by the groundwater flow gradient on the site and heterogeneities in the hydraulic conductivity field. Moreover, due to high injection temperatures during the field experiment a temperature-induced fluid density effect on heat transport occurred. By using a flow and heat transport numerical model with variable density coupled with a pilot point approach for inversion of the hydraulic conductivity field, the main preferential flow paths were delineated. The successful application of a field heat tracer test at this site suggests that heat tracer tests is a promising approach to image hydraulic conductivity field. This methodology could be applied in aquifer thermal energy storage (ATES) projects for assessing future efficiency that is strongly linked to the hydraulic conductivity variability in the considered aquifer. [less ▲]

Detailed reference viewed: 57 (21 ULg)
Full Text
Peer Reviewed
See detailHeat tracer test in an alluvial aquifer: field experiment and inverse modelling
Klepikova, Maria; Wildemeersch, Samuel; Jamin, Pierre ULg et al

Poster (2016, April 20)

Using heat as an active tracer for aquifer characterization is a topic of increasing interest. In this study, we investigate the potential of using heat tracer tests for characterization of a shallow ... [more ▼]

Using heat as an active tracer for aquifer characterization is a topic of increasing interest. In this study, we investigate the potential of using heat tracer tests for characterization of a shallow alluvial aquifer. A thermal tracer test was conducted in the alluvial aquifer of the Meuse River, Belgium. The tracing experiment consisted in simultaneously injecting heated water and a dye tracer in a piezometer and monitoring the evolution of groundwater temperature and tracer concentration in the recovery well and in monitoring wells. To get insights in the 3D characteristics of the heat transport mechanisms, temperature data from a large number of observation wells distributed throughout the field site (space-filling arrangement) were used. Temperature breakthrough curves in observation wells are contrasted with what would be expected in an ideal layered aquifer. They reveal strongly unequal lateral and vertical components of the transport mechanisms. The observed complex behavior of the heat plume was explained by the groundwater flow gradient on the site and heterogeneity of hydraulic conductivity field. Moreover, due to high injection temperatures during the field experiment a temperature-induced fluid density effect on heat transport occurred. By using a flow and heat transport numerical model with variable density coupled with the pilot point inverse approach, main preferential flow paths were delineated. [less ▲]

Detailed reference viewed: 89 (16 ULg)
Full Text
Peer Reviewed
See detailUse of dual carbon-chlorine isotope analysis to assess the degradation pathways of 1,1,1-trichloroethane in groundwater
Palau, Jordi; Jamin, Pierre ULg; Badin, Alice et al

in Water Research (2016)

Compound-specific isotope analysis (CSIA) is a powerful tool to track contaminant fate in groundwater. However, the application of CSIA to chlorinated ethanes has received little attention so far. These ... [more ▼]

Compound-specific isotope analysis (CSIA) is a powerful tool to track contaminant fate in groundwater. However, the application of CSIA to chlorinated ethanes has received little attention so far. These compounds are toxic and prevalent groundwater contaminants of environmental concern. The high susceptibility of chlorinated ethanes like 1,1,1-trichloroethane (1,1,1-TCA) to be transformed via different competing pathways (biotic and abiotic) complicates the assessment of their fate in the subsurface. In this study, the use of a dual C-Cl isotope approach to identify the active degradation pathways of 1,1,1-TCA is evaluated for the first time in an aerobic aquifer impacted by 1,1,1-TCA and trichloroethylene (TCE) with concentrations of up to 20 mg/L and 3.4 mg/L, respectively. The reaction-specific dual carbon-chlorine (C-Cl) isotope trends determined in a recent laboratory study illustrated the potential of a dual isotope approach to identify contaminant degradation pathways of 1,1,1-TCA. Compared to the dual isotope slopes (Δδ13C/Δδ37Cl) previously determined in the laboratory for dehydrohalogenation / hydrolysis (DH/HY, 0.33 ± 0.04) and oxidation by persulfate (∞), the slope determined from field samples (0.6 ± 0.2, r2 = 0.75) is closer to the one observed for DH/HY, pointing to DH/HY as the predominant degradation pathway of 1,1,1-TCA in the aquifer. The observed deviation could be explained by a minor contribution of additional degradation processes. This result, along with the little degradation of TCE determined from isotope measurements, confirmed that 1,1,1-TCA is the main source of the 1,1-dichlorethylene (1,1-DCE) detected in the aquifer with concentrations of up to 10 mg/L. This study demonstrates that a dual C-Cl isotope approach can strongly improve the qualitative and quantitative assessment of 1,1,1-TCA degradation processes in the field. [less ▲]

Detailed reference viewed: 65 (10 ULg)
Full Text
See detailHow heterogeneity of the K-field influences a heat plume in a shallow alluvial aquifer: responses from a heat tracer test
Klepikova, Maria; Jamin, Pierre ULg; Orban, Philippe ULg et al

in Abstract book (2016, January 26)

Simultaneous solute and heat tracer test provides essential information for a reliable assessment of low temperature geothermal systems. The actual efficiency of ‘open systems’, including heat storage ... [more ▼]

Simultaneous solute and heat tracer test provides essential information for a reliable assessment of low temperature geothermal systems. The actual efficiency of ‘open systems’, including heat storage projects, is strongly affected by the heterogeneity of the hydraulic conductivity field (K-field). It could be also useful for assessing the cumulative impacts of numerous projects in urban areas on the groundwater resources. Using field data from a solute and heat tracer test conducted in the alluvial aquifer of the Meuse River (Belgium), an inverse problem of parameter estimation is solved. The tracing experiment consisted in simultaneously injecting heated water and a dye tracer in a piezometer and monitoring the evolution of groundwater temperature and tracer concentration in the recovery well and in monitoring wells. To get insights in the 3D characteristics of the heat plume, an arrangement of three transects of observation wells was used. The breakthrough curves measured in the recovery well showed that heat transfer in the alluvial aquifer is slower and more dispersive than solute transport. Recovery is very low for heat while in the same time it is measured as relatively high for the solute tracer. This is due to the fact that heat transport is a thermal diffusion dominated process. For conditions corresponding to high Peclet numbers, the hydraulic conductivity is the primary calibration parameter for predicting heat plume distribution. Heat diffusion is larger than molecular diffusion, implying that exchange between groundwater and the porous medium matrix is far more significant for heat than for solute tracers. [less ▲]

Detailed reference viewed: 46 (4 ULg)
Full Text
See detailHeat tracer and solute tests in an alluvial aquifer: field experiment and inverse modelling
Dassargues, Alain ULg; Klepikova, Maria; Jamin, Pierre ULg et al

Poster (2015, December 18)

Using heat as an active tracer in different types of aquifers is a topic of increasing interest. In this study, we investigate the potential interest of using heat tracer tests for characterization of a ... [more ▼]

Using heat as an active tracer in different types of aquifers is a topic of increasing interest. In this study, we investigate the potential interest of using heat tracer tests for characterization of a shallow alluvial aquifer. A thermal tracer test was conducted in the alluvial aquifer of the Meuse River, Belgium. The tracing experiment consisted in simultaneously injecting heated water and a dye tracer in a piezometer and monitoring the evolution of groundwater temperature and tracer concentration in the recovery well and in monitoring wells. To get insights in the 3D characteristics of the heat transport mechanisms the space-filling arrangement of observation wells was used. The breakthrough curves measured in the recovery well showed that heat transfer in the alluvial aquifer is slower and more dispersive than solute transport. Recovery is very low for heat while in the same time it is measured as relatively high for the solute tracer. This is due to the fact that heat diffusion is larger than molecular diffusion, implying that exchange between groundwater and the porous medium matrix is far more significant for heat than for solute tracers. Temperature breakthrough curves in other piezometers are contrasted with what would be expected in an ideal layered aquifer. They reveal strongly unequal lateral and vertical components of the transport mechanisms. The observed complex behavior of the heat plume was explained by the groundwater flow gradient on the site and heterogeneities of hydraulic conductivity field. By using numerical model of heat and flow coupled with pilot points inverse approach main preferential paths were characterized. [less ▲]

Detailed reference viewed: 35 (3 ULg)
Full Text
See detailUse of dual carbon-chlorine isotope analysis to identify degradation pathways of 1,1,1-trichloroethane in groundwater
Palau, Jordi; Jamin, Pierre ULg; Badin, Alice et al

Conference (2015, September 17)

The high susceptibility of chlorinated aliphatic hydrocarbons (CAHs) like 1,1,1-trichloroethane (1,1,1-TCA) to be transformed via different competing pathways (biotic and abiotic) complicates the ... [more ▼]

The high susceptibility of chlorinated aliphatic hydrocarbons (CAHs) like 1,1,1-trichloroethane (1,1,1-TCA) to be transformed via different competing pathways (biotic and abiotic) complicates the assessment of their fate in groundwater. This knowledge is necessary to evaluate contaminant degradation and potential formation of toxic intermediates. Identifying pathways is further complicated in sites contaminated by mixed CAHs because some degradation products of 1,1,1-TCA can be formed from different precursors. Here, identification of pathways based solely on substrate-product concentration relationships may lead to ambiguous interpretations. This study investigates, for the first time, dual C−Cl isotope fractionation as a means of identifying and assessing degradation pathways of 1,1,1-TCA in groundwater. Distinctly different dual isotope trends (L = Δδ13C/Δδ37Cl) were observed for 1,1,1-TCA transformation via oxidation with heat-activated persulfate (L = ∞), reduction with zerovalent iron (L = 1.5 ± 0.1), hydrolysis and dehydrohalogenation (HY/DH, L = 0.33 ± 0.04) in laboratory experiments, illustrating the potential of a dual isotope approach. This approach was evaluated in an aerobic aquifer impacted by 1,1,1-TCA and trichloroethylene (TCE) with concentrations of up to 20 mg/L and 3.4 mg/L, respectively. For 1,1,1-TCA, the dual isotope slope determined from field samples (L = 0.6 ± 0.2, r2 = 0.75) was close to the slope observed for HY/DH in the laboratory (L = 0.33 ± 0.04), indicating that HY/DH was the predominant degradation pathway of 1,1,1-TCA in the aquifer. The observed deviation could be explained by a minor contribution of additional degradation processes. This result, along with the little degradation of TCE determined from isotope measurements, confirmed that 1,1,1-TCA was the main source of the 1,1-dichlorethylene (1,1-DCE) detected in the aquifer with concentrations of up to 10 mg/L. This study demonstrates that a dual C-Cl isotope approach can strongly improve the qualitative and quantitative assessment of 1,1,1-TCA degradation processes in the field. [less ▲]

Detailed reference viewed: 57 (9 ULg)
Full Text
See detailThe use of the Vadose Zone Experimental Setup as an innovative in situ characterization method for the vadose zone: a case study at an industrial contaminated site in Belgium
Fernandez de Vera, Natalia ULg; Beaujean, Jean ULg; Jamin, Pierre ULg et al

Conference (2015, September)

The development of protection and remediation plans for contaminated soil and groundwater require a detailed understanding of the transport of pollutants in the subsurface. However, such understanding is ... [more ▼]

The development of protection and remediation plans for contaminated soil and groundwater require a detailed understanding of the transport of pollutants in the subsurface. However, such understanding is affected by the lack of spatial and temporal coverage provided by the current in situ characterization technologies. A new system has been developed in order to overcome such limitations. The vadose zone experimental setup is a new development combining cross-hole geophysics and the Vadose Zone Monitoring System (VMS). In cross-hole geophysics, an injection of an electrical current using electrodes installed in vertical boreholes is triggered. From measured potential differences, spatial patterns related with subsurface heterogeneities, water content and solute concentrations are inferred. The VMS allows continuous measurements of water content at different depths of the vadose zone, as well as water sampling. The system is formed by a flexible sleeve containing monitoring units along its depth which is installed in a slanted borehole. The system was installed at a former industrial site in Belgium, where soil and groundwater are contaminated with BTEX, PAH, and heavy metals. Two VMS were installed in two slanted boreholes on site, together with four vertical boreholes containing electrodes for geophysical measurements. The site was initially monitored under natural recharge conditions. Water content sensors located along the VMS registered fast wetting and draining reactions to rainfall events followed by the activation of water transport through fractures. Results from soil water samples show continuous evolution of water chemistry with depth, due to disequilibrium between infiltrated water and the hydrochemical conditions in the unsaturated zone. Subsequently, a saline tracer was injected in the surface. The transport of the tracer in the subsurface was monitored via cross-hole and surface geophysics. Results from imaging reflect the evolution of a plume through vertical and lateral transport and dilution. [less ▲]

Detailed reference viewed: 123 (15 ULg)
Full Text
See detailUse and utility of combined solute and heat tracer tests for characterizing hydrogeothermal properties of an alluvial aquifer
Klepikova, Maria; Wildemeersch, Samuel; Jamin, Pierre ULg et al

Conference (2015, June 05)

Using heat as a tracer together with a solute tracer is interesting for characterizing hydrogeothermal properties of the underground. These properties are particularly needed to dimension any low ... [more ▼]

Using heat as a tracer together with a solute tracer is interesting for characterizing hydrogeothermal properties of the underground. These properties are particularly needed to dimension any low temperature geothermal project using an open doublet system (pumping-reinjection) in a shallow aquifer. The tracing experiment, conducted in the alluvial aquifer of the River Meuse (Hermalle near Liège), consisted in injecting simultaneously heated water at 40°C and a dye tracer in a piezometer and monitoring the evolution of temperature and tracer concentration in the recovery well and in nine monitoring piezometers located in three transects with regards to the main groundwater flow direction. The breakthrough curves measured in the recovery well showed that heat transfer in the alluvial aquifer is slower. All measured results show also that the heat diffusivity is larger than the solute dispersion. These contrasted behaviours are stressed in the lower permeability zones of the aquifer. Inverse modelling is applied for calibrating the numerical simulation of the groundwater flow, heat and solute transport. First results are presented showing that the density effect must be taken into account and that, as expected, the most important parameter to be calibrated accurately is the hydraulic conductivity. [less ▲]

Detailed reference viewed: 48 (11 ULg)
Full Text
Peer Reviewed
See detailContribution of the Finite Volume Point Dilution Method for measurement of groundwater fluxes in a fractured aquifer
Jamin, Pierre ULg; Goderniaux, Pascal; Bour, Olivier et al

in Journal of Contaminant Hydrology (2015)

Measurement of groundwater fluxes is the basis of all hydrogeological study, from hydraulics characterization to the most advanced reactive transport modelling. Usual groundwater fluxes estimation with ... [more ▼]

Measurement of groundwater fluxes is the basis of all hydrogeological study, from hydraulics characterization to the most advanced reactive transport modelling. Usual groundwater fluxes estimation with Darcy’s law may lead to cumulated errors on spatial variability, especially in fractured aquifers where local direct measurement of groundwater fluxes becomes necessary. In the present study, both classical Point Dilution Method (PDM) and Finite Volume Point Dilution Method (FVPDM) are compared on the fractured crystalline aquifer of Ploemeur, France. The manipulation includes the first use of the FVPDM in a fractured aquifer using a double packer. This configuration limits the vertical extend of the tested zone to target a precise fracture zone of the aquifer. The result of this experiment is a continuous monitoring of groundwater fluxes that lasted for more than 4 days. Measurements of groundwater flow rate in the fracture (Qt) by PDM provide good estimates only if the mixing volume (Vw) (volume of water in which the tracer is mixed) is precisely known. Conversely, the FVPDM allows for an independent estimation of Vw and Qt, leading to better precision in case of complex experimental setup such as the one used. The precision of a PDM does not rely on the duration of the experiment while a FVPDM may require long experimental duration to guarantees a good precision. Classical PDM should then be used for rapid estimation of groundwater flux using simple experimental setup. On the other hand, the FVPDM is a more precise method that has a great potential for development but may require longer duration experiment to achieve a good precision if the groundwater fluxes investigated are low and/or the mixing volume is large. [less ▲]

Detailed reference viewed: 35 (8 ULg)
Full Text
Peer Reviewed
See detailQuantitative temperature monitoring of a heat tracing experiment using cross-borehole ERT
Hermans, Thomas ULg; Wildemeersch, Samuel ULg; Jamin, Pierre ULg et al

in Geothermics (2015), 53

The growing demand for renewable energy leads to an increase in the development of geothermal energy projects and heat has become a common tracer in hydrology and hydrogeology. Designing geothermal ... [more ▼]

The growing demand for renewable energy leads to an increase in the development of geothermal energy projects and heat has become a common tracer in hydrology and hydrogeology. Designing geothermal systems requires a multidisciplinary approach including geological and hydrogeological aspects. In this context, electrical resistivity tomography (ERT) can bring relevant, qualitative and quantitative information on the temperature distribution in operating shallow geothermal systems or during heat tracing experiments. We followed a heat tracing experiment in an alluvial aquifer using cross-borehole time-lapse ERT. Heated water was injected in a well while water of the aquifer was extracted at another well. An ERT section was set up across the main flow direction. The results of ERT were transformed into temperature using calibrated petrophysical relationships. These ERT-derived temperatures were then compared to direct temperature measurements in control piezometers collected with distributed temperature sensing (DTS) and groundwater temperature loggers. Spatially, it enabled to map the horizontal and vertical extent of the heated water plume, as well as the zones where maximum temperatures occurred. Quantitatively, the temperatures and breakthrough curves estimated from ERT were in good agreement with the ones observed directly during the rise and maximum of the curve. An overestimation, likely related to 3D effects, was observed for the tail of the heat breakthrough curve. The error made on temperature can be estimated to be between 10 to 20 %, which is a fair value for indirect measurements. From our data, we estimated a quantification threshold for temperature variation of 1.2°C. These results suggest that ERT should be considered when designing heat tracing experiments or geothermal systems. It could help also to assess the geometrical complexity of the concerned reservoirs. It also appears that ERT could be a useful tool to monitor and control geothermal systems once they are in operation. [less ▲]

Detailed reference viewed: 272 (88 ULg)
Full Text
See detailA heat and dye tracer test for characterizing and modelling heat transfer in an alluvial aquifer
Klepikova, Maria ULg; Wildemeersch, Samuel; Jamin, Pierre ULg et al

Poster (2014, September 22)

Using heat as an active tracer is a topic of increasing interest with regards to characterizing shallow aquifers for ATES (Aquifer Thermal Energy Storage) systems. In this study, we investigate the ... [more ▼]

Using heat as an active tracer is a topic of increasing interest with regards to characterizing shallow aquifers for ATES (Aquifer Thermal Energy Storage) systems. In this study, we investigate the potential interest of coupling simultaneous heat and dye tracer injection tests for characterization of an alluvial aquifer. The study site is located near Liege in the alluvial aquifer of the Meuse River, Belgium. The tracing experiment consisted in simultaneously injecting heated water and a dye tracer in a piezometer and monitoring the evolution of groundwater temperature and tracer concentration in the recovery well and in nine monitoring wells located according to three transects with regards to the main groundwater flow direction. The breakthrough curves measured in the recovery well showed that heat transfer in the alluvial aquifer is slower and more dispersive than solute transport. Recovery is very low for heat while in the same time it is measured as relatively high for the solute tracer. This shows how heat diffusion is larger than molecular diffusion, implying that exchange between groundwater and the porous medium matrix is far more significant for heat than for solute tracers. In a first step, temperature and concentrations in the recovery well are used for estimating the specific heat capacity with an energy balance calculation and the estimated value is found to be consistent with those found in the literature. Then, the measured temperature breakthrough curves in the piezometers are used for constraining the heat transport model. They are highly contrasted with what would be expected in an ideal layered aquifer. They reveal strongly unequal lateral and vertical components of the transport mechanisms. A preliminary interpretation of these temperature breakthrough curves is provided with first results from the model. Then it will allow for estimating the entire set of heat transfer parameters and their spatial distribution by inverse modelling. The developed concepts and tests may lead to real projects of various extents that can be now optimized by the use of a rigorous and efficient methodology at the field scale. [less ▲]

Detailed reference viewed: 75 (12 ULg)
Full Text
Peer Reviewed
See detailVADOSE ZONE STUDIES AT AN INDUSTRIAL CONTAMINATED SITE: THE VADOSE ZONE MONITORING SYSTEM AND CROSS-HOLE GEOPHYSICS
Fernandez de Vera, Natalia ULg; Beaujean, Jean ULg; Jamin, Pierre ULg et al

Conference (2014, September 03)

In situ vadose zone characterization is essential to improve risk characterization and remediation measures for soil and groundwater contamination. However, most available technologies have been developed ... [more ▼]

In situ vadose zone characterization is essential to improve risk characterization and remediation measures for soil and groundwater contamination. However, most available technologies have been developed in the context of agricultural soils. Most of these methodologies are not applicable at industrial sites, where soils and contamination differ in origin and composition. In addition, they are applicable only in the first meters of soils, leaving deeper vadose zones with lack of information, in particular on field scale heterogeneity. To overcome such difficulties, a vadose zone experiment has been setup at a former industrial site in Belgium. Industrial activities carried out on site left a legacy of soil and groundwater contamination in BTEX, PAH, cyanide and heavy metals. The experiment involves the combination of two techniques: the Vadose Zone Monitoring System (VMS) and cross-hole geophysics. The VMS allows continuous measurements of water content at different depths of the vadose zone (Dahan et al., 2009). In addition, it provides the possibility of pore water sampling at different depths. The system is formed by a flexible sleeve installed in a slanted borehole (Fig. 1) and containing monitoring units along its depth (Fig. 2). The flexible sleeve contains three types of monitoring units in the vadose zone: Time Domain Transmissometry (TDT), which allows water content measurements; Vadose Sampling Ports (VSP), used for collecting water samples coming from the matrix; and the Fracture Samplers (FS), which are used for retrieving water samples from the fractures. Cross-hole electrical tomography measurements are carried providing detailed spatial patterns about electrical properties of the subsurface. Such properties are related with subsurface heterogeneities, water content and solute concentrations. Two VMS were installed on site, together with four vertical boreholes containing electrodes for geophysical measurements. The site has been monitored under natural recharge conditions during the summer, autumn and winter. Results show reactions in the soil at depths up to 6m as a consequence of rainfall infiltration and groundwater level fluctuations. In addition, the chemistry of the soil water changes with depth and water infiltration. Background images obtained from geophysical measurements show a highly conductive subsurface due to the lithologies and the high mineralization of the water in the vadose zone. The combination of cross-hole geophysics with the VMS has provided an effective tool for characterizing the chemistry and the structure of the vadose zone. [less ▲]

Detailed reference viewed: 105 (6 ULg)
Full Text
See detailVadose zone studies at an industrial contaminated site: the vadose zone monitoring system and cross-hole geophysics
Fernandez de Vera, Natalia ULg; Beaujean, Jean ULg; Jamin, Pierre ULg et al

Poster (2014, April 29)

Poster presented at the European Geoscience Union General Assembly 2014. In this poster, the installation of the vadose zone experimental set up is presented along with first results

Detailed reference viewed: 21 (7 ULg)
Full Text
See detailThermal tracer tests for characterizing a shallow alluvial aquifer
Wildemeersch, Samuel ULg; Klepikova, Maria ULg; Jamin, Pierre ULg et al

in Geophysical Research Abstracts (2014, April 28)

Using heat as an active tracer in different types of aquifers is a topic of increasing interest [e.g. Vandenbohede et al.; 2008, Wagner et al., 2013; Read et al., 2013]. In this study, we investigate the ... [more ▼]

Using heat as an active tracer in different types of aquifers is a topic of increasing interest [e.g. Vandenbohede et al.; 2008, Wagner et al., 2013; Read et al., 2013]. In this study, we investigate the potential interest of coupling heat and solute tracer tests for characterization of a shallow alluvial aquifer. A thermal tracer test was conducted in the alluvial aquifer of the Meuse River, Belgium. The tracing experiment consisted in simultaneously injecting heated water and a dye tracer in a piezometer and monitoring the evolution of groundwater temperature and tracer concentration in the recovery well and in nine monitoring wells located according to three transects with regards to the main groundwater flow direction. The breakthrough curves measured in the recovery well showed that heat transfer in the alluvial aquifer is slower and more dispersive than solute transport. Recovery is very low for heat while in the same time it is measured as relatively high for the solute tracer. This is due to the fact that heat diffusion is larger than molecular diffusion, implying that exchange between groundwater and the porous medium matrix is far more significant for heat than for solute tracers. Temperature and concentrations in the recovery well are then used for estimating the specific heat capacity with the energy balance approach and the estimated value is found to be consistent with those found in the literature. Temperature breakthrough curves in other piezometers are contrasted with what would be expected in an ideal layered aquifer. They reveal strongly unequal lateral and vertical components of the transport mechanisms. By means of a numerical heat transport model, we provide a preliminary interpretation of these temperature breakthrough curves. Furthermore, these data could be included in the calibration of a complex heat transfer model for estimating the entire set of heat transfer parameters and their spatial distribution by inverse modeling. [less ▲]

Detailed reference viewed: 51 (8 ULg)
Full Text
See detailVadose zone studies at an industrial contaminated site: the vadose zone monitoring system and cross-hole geophysics
Fernandez de Vera, Natalia ULg; Pena Hernandez, Juan Angel; Beaujean, Jean ULg et al

Scientific conference (2014, March 05)

Oral presentation of the PhD project at the ENVITAM PhD day in Louvain-la-Neuve

Detailed reference viewed: 34 (6 ULg)
Full Text
See detailVadose zone studies at an industrial contaminated site: the vadose zone monitoring system and cross-hole geophysics
Fernandez de Vera, Natalia ULg; Pena Hernandez, Juan; Beaujean, Jean ULg et al

Scientific conference (2014, January 15)

Oral presentation for the PhD geoscience day at the University of Liege.

Detailed reference viewed: 41 (7 ULg)
Full Text
Peer Reviewed
See detailCoupling heat and chemical tracer experiments for estimating heat transfer parameters in shallow alluvial aquifers
Wildemeersch, Samuel ULg; Jamin, Pierre ULg; Orban, Philippe ULg et al

in Journal of Contaminant Hydrology (2014), 169

Geothermal energy systems, closed or open, are increasingly considered for heating and/or cooling buildings. The efficiency of such systems depends on the thermal properties of the subsurface. Therefore ... [more ▼]

Geothermal energy systems, closed or open, are increasingly considered for heating and/or cooling buildings. The efficiency of such systems depends on the thermal properties of the subsurface. Therefore, feasibility and impact studies performed prior to their installation should include a field characterization of thermal properties and a heat transfer model using parameter values measured in situ. However, there is a lack of in situ experiments and methodology for performing such a field characterization, especially for open systems. This study presents an in situ experiment designed for estimating heat transfer parameters in shallow alluvial aquifers with focus on the specific heat capacity. This experiment consists in simultaneously injecting hot water and a chemical tracer into the aquifer and monitoring the evolution of groundwater temperature and concentration in the recovery well (and possibly in other piezometers located down gradient). Temperature and concentrations are then used for estimating the specific heat capacity. The first method for estimating this parameter is based on a modeling in series of the chemical tracer and temperature breakthrough curves at the recovery well. The second method is based on an energy balance. The values of specific heat capacity estimated for both methods (2.30 and 2.54 MJ/m3/K) for the experimental site in the alluvial aquifer of the Meuse River (Belgium) are almost identical and consistent with values found in the literature. Temperature breakthrough curves in other piezometers are not required for estimating the specific heat capacity. However, they highlight that heat transfer in the alluvial aquifer of the Meuse River is complex and contrasted with different dominant process depending on the depth leading to significant vertical heat exchange between upper and lower part of the aquifer. Furthermore, these temperature breakthrough curves could be included in the calibration of a complex heat transfer model for estimating the entire set of heat transfer parameters and their spatial distribution by inverse modeling. [less ▲]

Detailed reference viewed: 77 (37 ULg)