References of "Iemma, A. F"
     in
Bookmark and Share    
Full Text
See detailInterprétation géométrique de la régression
Iemma, A. F.; Palm, Rodolphe ULg

in Notes de Statistique et d'Informatique (2003), (2), 1-28

Detailed reference viewed: 9 (0 ULg)
Full Text
See detailConditions d'application et transformations de variables en régression linéaire
Palm, Rodolphe ULg; Iemma, A. F.

in Notes de Statistique et d'Informatique (2002), (1), 1-34

This note first reviews methods used for checking the assumptions in linear regression (lack of fit, normality, homoscedasticity and independance of the residuals) and then describes variables ... [more ▼]

This note first reviews methods used for checking the assumptions in linear regression (lack of fit, normality, homoscedasticity and independance of the residuals) and then describes variables transformations as remedial action when the assumptions are not fulfilled. [less ▲]

Detailed reference viewed: 40 (1 ULg)
Full Text
See detailA propos des qualificatifs complet, orthogonal et équilibré en analyse de la variance.
Iemma, A. F.; Claustriaux, Jean-Jacques ULg

in Notes de Statistique et d'Informatique (1999), (2), 15

With examples, we introduce the words complete, orhtogonal and balanced used in analysis of variance.

Detailed reference viewed: 5 (0 ULg)
Full Text
See detailEtude des hypothèses de l'analyse de la variance à deux critères de classification : approche par l'exemple
Iemma, A. F.; Claustriaux, Jean-Jacques ULg

in Notes de Statistique et d'Informatique (1999), (3), 36

By examples and results from SAS and Minitab softwares (GLM), analysis of variance hypothesis built to analyse a two dimensional data table are introduced.

Detailed reference viewed: 14 (1 ULg)
Full Text
Peer Reviewed
See detailQuelques alternatives à la régression classique dans le cas de la colinéarité
Palm, Rodolphe ULg; Iemma, A. F.

in Revue de Statistique Appliquée (1995), XLIII(2), 5-33

In this note, we briefly describe some biased regresion methods : principal component regression, latent root regression analysis, partial least square regression, ridge regression and use of James-Stein ... [more ▼]

In this note, we briefly describe some biased regresion methods : principal component regression, latent root regression analysis, partial least square regression, ridge regression and use of James-Stein's estimators. All these methods are illustrated by an example. [less ▲]

Detailed reference viewed: 21 (1 ULg)
Full Text
Peer Reviewed
See detailSobre a construção de porjetores ortogonais
Iemma, A. F.; Palm, Rodolphe ULg; Claustriaux, Jean-Jacques ULg

in Revista de Matemática e Estatìstica (1993), 11

Detailed reference viewed: 1 (0 ULg)
Peer Reviewed
See detailStatistical hypothesis and orthogonal projections for unbalanced data
Iemma, A. F.; Palm, Rodolphe ULg

Poster (1992)

Detailed reference viewed: 3 (0 ULg)
Peer Reviewed
See detailProjetores ortogonais e hipóteses estatísticas sobre dados desbalanceados
Iemma, A. F.; Palm, Rodolphe ULg; Alves, M. I. F.

Poster (1992)

Detailed reference viewed: 11 (0 ULg)
See detailLes matrices inverses généralisées et leur utilisation dans le modèle linéaire
Iemma, A. F.; Palm, Rodolphe ULg

in Notes de Statistique et d'Informatique (1992), (1), 25

In this note, we first present three different types of generalized inverse matrices (conditional, least squares and MOORE-PENROSE inverse matrices), as well as some of their properties. Applications of ... [more ▼]

In this note, we first present three different types of generalized inverse matrices (conditional, least squares and MOORE-PENROSE inverse matrices), as well as some of their properties. Applications of these inverse matrices in the linear model are then examined (normal equations solutions, orthogonal projections, sums of squares and their sampling distributions, estimations of parametric functions and sums of squares related to hypotheses testing). [less ▲]

Detailed reference viewed: 65 (2 ULg)