References of "Ibrahimov, M"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailCOSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses. IX. Time delays, lens dynamics and baryonic fraction in HE 0435-1223
Courbin, F.; Chantry, Virginie ULg; Revaz, Y. et al

in Astronomy and Astrophysics (2011), 536

We present accurate time delays for the quadruply imaged quasar HE 0435-1223. The delays were measured from 575 independent photometric points obtained in the R-band between January 2004 and March 2010 ... [more ▼]

We present accurate time delays for the quadruply imaged quasar HE 0435-1223. The delays were measured from 575 independent photometric points obtained in the R-band between January 2004 and March 2010. With seven years of data, we clearly show that quasar image A is affected by strong microlensing variations and that the time delays are best expressed relative to quasar image B. We measured ΔtBC = 7.8 ± 0.8 days, ΔtBD = -6.5 ± 0.7 days and ΔtCD = -14.3 ± 0.8 days. We spacially deconvolved HST NICMOS2 F160W images to derive accurate astrometry of the quasar images and to infer the light profile of the lensing galaxy. We combined these images with a stellar population fitting of a deep VLT spectrum of the lensing galaxy to estimate the baryonic fraction, fb, in the Einstein radius. We measured fb = 0.65-0.10+0.13 if the lensing galaxy has a Salpeter IMF and fb = 0.45-0.07+0.04 if it has a Kroupa IMF. The spectrum also allowed us to estimate the velocity dispersion of the lensing galaxy, σap = 222 ± 34 km s-1. We used fb and σap to constrain an analytical model of the lensing galaxy composed of an Hernquist plus generalized NFW profile. We solved the Jeans equations numerically for the model and explored the parameter space under the additional requirement that the model must predict the correct astrometry for the quasar images. Given the current error bars on fb and σap, we did not constrain H0 yet with high accuracy, i.e., we found a broad range of models with χ2 < 1. However, narrowing this range is possible, provided a better velocity dispersion measurement becomes available. In addition, increasing the depth of the current HST imaging data of HE 0435-1223 will allow us to combine ourconstraints with lens reconstruction techniques that make use of the full Einstein ring that is visible in this object. Based on observations made with the 1.2 m Euler Swiss Telescope, the 1.5 m telescope of Maidanak Observatory in Uzbekistan, and with the 1.2 m Mercator Telescope, operated on the island of La Palma by the Flemish Community, at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias. The NASA/ESA Hubble Space Telescope data was obtained from the data archive at the Space Telescope Science Institute, which is operated by AURA, the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS-5-26555.Light curves are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/536/A53 [less ▲]

Detailed reference viewed: 38 (13 ULg)
Full Text
Peer Reviewed
See detailMulti-wavelength observations of afterglow of GRB 080319B and the modeling constraints
Pandey, S. B.; Castro-Tirado, A. J.; Jelínek, M. et al

in Astronomy and Astrophysics (2009), 504(1), 45-51

We present observations of the afterglow of GRB 080319B at optical, mm and radio frequencies from a few hours to 67 days after the burst. Present observations along with other published multi-wavelength ... [more ▼]

We present observations of the afterglow of GRB 080319B at optical, mm and radio frequencies from a few hours to 67 days after the burst. Present observations along with other published multi-wavelength data have been used to study the light-curves and spectral energy distributions of the burst afterglow. The nature of this brightest cosmic explosion has been explored based on the observed properties and it's comparison with the afterglow models. Our results show that the observed features of the afterglow fits equally good with the Inter Stellar Matter and the Stellar Wind density profiles of the circum-burst medium. In case of both density profiles, location of the maximum synchrotron frequency $\nu_m$ is below optical and the value of cooling break frequency $\nu_c$ is below $X-$rays, $\sim 10^{4}$s after the burst. Also, the derived value of the Lorentz factor at the time of naked eye brightness is $\sim 300$ with the corresponding blast wave size of $\sim 10^{18}$ cm. The numerical fit to the multi-wavelength afterglow data constraints the values of physical parameters and the emission mechanism of the burst. [less ▲]

Detailed reference viewed: 20 (5 ULg)
Full Text
Peer Reviewed
See detailCOSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses. V. The time delay in SDSS J1650+4251
Vuissoz, C.; Courbin, F.; Sluse, Dominique ULg et al

in Astronomy and Astrophysics (2007), 464

Aims.Our aim is to measure the time delay between the two gravitationally lensed images of the z_qso = 1.547 quasar SDSS J1650+4251, in order to estimate the Hubble constant H_0. Methods: Our measurement ... [more ▼]

Aims.Our aim is to measure the time delay between the two gravitationally lensed images of the z_qso = 1.547 quasar SDSS J1650+4251, in order to estimate the Hubble constant H_0. Methods: Our measurement is based on R-band light curves with 57 epochs obtained at Maidanak Observatory, in Uzbekistan, from May 2004 to September 2005. The photometry is performed using simultaneous deconvolution of the data, which provides the individual light curves of the otherwise blended quasar images. The time delay is determined from the light curves using two very different numerical techniques, i.e., polynomial fitting and direct cross-correlation. The time delay is converted into H[SUB]0[/SUB] following analytical modeling of the potential well. Results: Our best estimate of the time delay is Delta t = 49.5 ± 1.9 days, i.e., we reach a 3.8% accuracy. The R-band flux ratio between the quasar images, corrected for the time delay and for slow microlensing, is F_A/F[SUB]B[/SUB] = 6.2 ± 5%. Conclusions: .The accuracy reached on the time delay allows us to discriminate well between families of lens models. As for most other multiply imaged quasars, only models of the lensing galaxy that have a de Vaucouleurs mass profile plus external shear give a Hubble constant compatible with the current most popular value (H[SUB]0[/SUB] = 72 ± 8 km s[SUP]-1[/SUP] Mpc[SUP]-1[/SUP]). A more realistic singular isothermal sphere model plus external shear gives H[SUB]0[/SUB] = 51.7[SUP]+4.0[/SUP][SUB]-3.0[/SUB] km s[SUP]-1[/SUP] Mpc[SUP]-1[/SUP]. Table [see full text] is only available in electronic form at http://www.aanda.org [less ▲]

Detailed reference viewed: 13 (1 ULg)